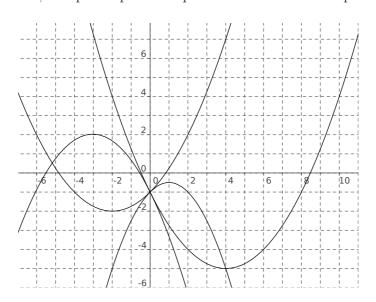
Devoir de mathématiques n^o 6 - 1èreL

2 février 2012 - 1h


Exercice 1 (4 pts)

f, g, h et k sont les fonctions définies par :

$$f(x) = -\frac{1}{2}x^2 + x - 1$$
 $g(x) = \frac{1}{4}x^2 - 2x - 1$

$$h(x) = -\frac{1}{3}x^2 - 2x - 1$$
 $k(x) = \frac{1}{4}x^2 + x - 1$

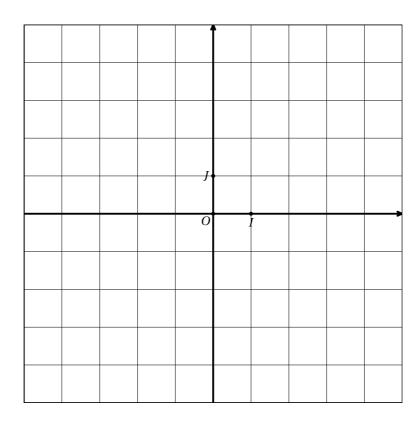
Pour chacune de ces fonctions, indiquer laquelle des paraboles ci-dessous la représente, en justifiant.

Exercice 2 (8 pts)

Sur l'écran de la calculatrice, tracer la courbe \mathcal{H} d'équation $y = \frac{2x-3}{x-1}$.

- 1. Conjecturer la position relative de la courbe ${\mathscr H}$ par rapport à l'axe des abscisses.
- 2. Résoudre algébriquement l'inéquation $\frac{2x-3}{x-1} > 0$, et vérifier la conjecture établie à la question précédente.
- 3. Sur le même écran, tracer la droite \mathcal{D} d'équation y=-x+3. Conjecturer la position relative de la courbe \mathcal{H} et de la droite \mathcal{D} .
- 4. Résoudre algébriquement l'inéquation $\frac{2x-3}{x-1} > -x+3$, et vérifier la conjecture établie à la question précédente.

Exercice 3


Soient f et g deux fonctions polynômes du second degré définies sur $\mathbb R$ par :

$$f(x) = x^2 + 3x - 1$$
 et $g(x) = 4 - x^2$.

(8 pts)

et ${\cal C}_f$ et ${\cal C}_g$ leurs représentations graphiques.

- 1. Représenter les courbes ${\cal C}_f$ et ${\cal C}_g$ sur le repère ci-dessous.
- 2. Déterminer par le calcul les coordonnées de points d'intersection de C_f et C_g . (vérifier que $2x^2+3x-5=(x-1)(2x+5)$)
- 3. Déterminer par le calcul la position relative des courbes C_f et C_g .

