Devoir de mathématiques n^o 3 - 1èreS7

16 octobre 2008 - 2H

Exercice 1

_ (4 points)

Soit ABCD un tétraèdre.

On note K le barycentre de (A, 2), (D, 1), G celui de (B, 2), (C, 2), (D, -1), et I le milieu de [GK].

- 1. Faire une figure.
- 2. Démontrer que les points I, A, B et C sont coplanaires.

Exercice 2

_ (5 points)

Dans un repère de l'espace $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ on donne les points suivants : A(0; 4; 0), B(-7; -4; 4), C(3; 6; -2) et D(1; 3; -1).

- 1. Montrer que A, B, C et D sont coplanaires.
- 2. Montrer que (AB) et (CD) sont sécantes.
- 3. Déterminer le point I d'intersection de (AB) et (CD).

Exercice 3

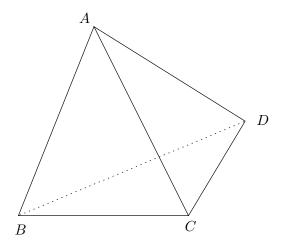
(7 points)

On considère le tétraèdre ABCD ci-contre.

On note I le milieu du segment [AB] et J celui de [CD].

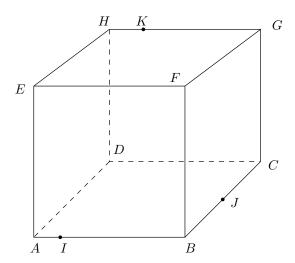
- 1. (a) Soit G_1 le barycentre des points (A,1), (B,1), (C,-1) et (D,1). Exprimez $\overrightarrow{\mathrm{IG}_1}$ en fonction de $\overrightarrow{\mathrm{CD}}$. Placez $I,\ J$ et G_1 sur la figure.
 - (b) Soit G_2 le barycentre des points (A,1), (B,1) et (D,2). Démontrez que G_2 est le milieu du segment [ID] et placez G_2 .
 - (c) Démontrez que IG_1DJ est un parallélogramme. En déduire la position de G_2 par rapport aux points G_1 et J.
- 2. Soit m un réel. On note G_m le barycentre des points (A,1), (B,1), (C,m-2) et (D,m).
 - (a) Précisez l'ensemble \mathcal{E} des valeurs de m pour lesquelles le barycentre G_m existe.

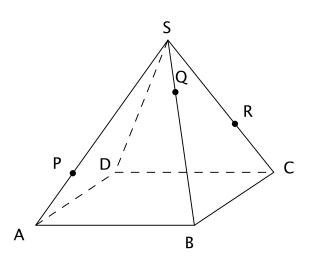
 Dans les questions qui suivent, on suppose que le réel m appartient à l'ensemble \mathcal{E} .
 - (b) Démontrez que G_m appartient au plan (ICD).
 - (c) Démontrez que le vecteur $m\overrightarrow{JG_m}$ est constant.
 - (d) En déduire l'ensemble \mathcal{F} des points G_m lorsque m décrit l'ensemble \mathcal{E} .



Exercice 4 (4 points)

1. Tracer la section du cube par le plan (IJK); laisser les traits de construction, aucune justification n'est demandée.





2. Tracer la section de la pyramide par le plan (PQR); aucune justification n'est demandée.