Devoir de mathématiques n^o 10 - 1èreS

18 février 2009 - 2H

Exercice 1: Soit f, la fonction définie sur \mathbb{R} par

$$f(x) = \frac{x^3 + 2x^2 + 3x - 2}{x^2 + 3}$$

On note $\mathcal C$ la courbe représentative de la fonction f dans un repère $(O;\overrightarrow{i},\overrightarrow{j})$.

- 1. Calculer la limite de f en $+\infty$ et en $-\infty$.
- 2. Vérifier que pour tout réel $x \in \mathbb{R}$:

$$f'(x) = \frac{(x+1)^2(x^2 - 2x + 9)}{(x^2 + 3)^2}$$

et dresser le tableau des variations complet de f.

3. (a) Déterminer les réels a, b et c tels que, pour tout réel $x \in \mathbb{R}$,

$$f(x) = ax + b + \frac{c}{x^2 + 3}$$

- (b) Montrer que la droite (D) d'équation y = x + 2 est une asymptote à \mathcal{C} ; préciser leur position relative.
- 4. Montrer que la courbe \mathcal{C} admet une tangente parallèle à (D), et une seule ; déterminer une équation de cette tangente.

Exercice 2: Dans un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$, on donne le cercle \mathcal{C} de centre O et de rayon 1.

- 1. Ecrire une équation de cercle \mathcal{C} .
- 2. On désigne par \mathcal{C}' le demi-cercle supérieur de \mathcal{C} . Expliquer pourquoi \mathcal{C}' est la représentation graphique de la fonction $f: x \mapsto \sqrt{1-x^2}$ et déterminer l'ensemble de définition de f.
- 3. Déterminer l'ensemble de dérivabilité de f et donner le coefficient directeur de la tangente Δ à \mathcal{C}' en tout point A(a; f(a)) de son ensemble de dérivabilité.
- 4. Donner l'équation de Δ au point A d'abscisse $a = \frac{1}{2}$.
- 5. A l'aide du produit scalaire, déterminer une équation de la tangente à \mathcal{C}' au point A d'abscisse $a = \frac{1}{2}$ et comparer avec l'équation de Δ obtenue à la question précédente.

Exercice 3

1. A, B, C sont trois points alignés dans cet ordre; O est un point pris sur la perpendiculaire en A à la droite (AB). Montrer que:

$$\overrightarrow{OB}.\overrightarrow{OC} = \overrightarrow{OA}^2 + \overrightarrow{AB}.\overrightarrow{AC}$$

2. Dans le cas de la figure ci-contre, en utilisant l'égalité précédente, calculer l'angle α au degré près.

Exercice 4: Soit un triangle ABC; on note H le projeté orthogonal de A sur [BC] tel que AB = 5, BH = 3 et CH = 2. Calculer les produits scalaires : $\overrightarrow{AB} \cdot \overrightarrow{BC}$, $\overrightarrow{AC} \cdot \overrightarrow{BC}$, $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Exercice 5: Soit un rectangle ABCD de centre O tel que AB = 8 et BC = 6.

- 1. (a) Montrer que pour tout point M, $\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} = 2MO^2 OA^2 OB^2$
 - (b) Déterminer puis tracer l'ensemble des points M qui vérifient : $\overrightarrow{MA} \cdot \overrightarrow{MC} + \overrightarrow{MB} \cdot \overrightarrow{MD} = 48$
- 2. (a) Montrer que $\overrightarrow{AB} \cdot \overrightarrow{CM} + \overrightarrow{BC} \cdot \overrightarrow{DM} = \overrightarrow{CM} \cdot \overrightarrow{AC}$
 - (b) Déterminer puis tracer l'ensemble des points M qui vérifient : $\overrightarrow{AB} \cdot \overrightarrow{CM} + \overrightarrow{BC} \cdot \overrightarrow{DM} = 20$