Devoir de mathématiques n^o 12 - 1èreS

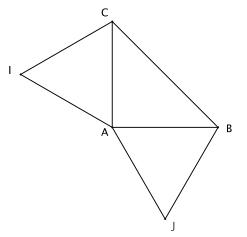
26 mars 2009 - 2H

Exercice 1:

On considère un triangle ABC direct, isocèle et rectangle en A; on construit les deux triangles équilatéraux indirects AIC et BJA.

Le but de l'exercice est de montrer que les droites (IJ) et (BC) sont parallèles.

- 1. (a) Déterminer une mesure de chacun des angles orientés suivants : $(\overrightarrow{AB}, \overrightarrow{AC}), (\overrightarrow{AJ}, \overrightarrow{AB})$ et $(\overrightarrow{AC}, \overrightarrow{AI})$.
 - (b) En déduire une mesure de l'angle orienté $(\overrightarrow{AJ}, \overrightarrow{AI})$.
- 2. (a) Quelle est la nature du triangle AJI?
 - (b) En déduire une mesure de l'angle orienté $(\overrightarrow{JI}, \overrightarrow{JA})$.
- 3. (a) Déterminer une mesure de chacun des angles orientés suivants : $(\overrightarrow{JA}, \overrightarrow{JB}), (\overrightarrow{JB}, \overrightarrow{BA})$ et $(\overrightarrow{BA}, \overrightarrow{BC})$.
 - (b) En déduire une mesure de l'angle orienté $(\overrightarrow{JA}, \overrightarrow{BC})$.
- 4. Déduire des questions 3) et 4) une mesure de l'angle orienté $(\overrightarrow{JI}, \overrightarrow{BC})$: conclure.



Exercice 2: On donne $\sin a = \frac{\sqrt{5}-1}{4}$ avec $a \in [0; \frac{\pi}{2}]$.

- 1. Calculer $\cos 2a$ et $\sin 2a$.
- 2. Vérifier par le calcul que $\cos 4a = \sin a$.
- 3. Résoudre l'équation précédente pour en déduire la valeur exacte de a.

Exercice 3:

- 1. Résoudre $\cos(2x \frac{\pi}{3}) \ge \frac{1}{2}$ sur $[0; 2\pi]$
- 2. Résoudre $\cos(3x) = \sin(x \frac{\pi}{4})$ sur $] \pi; \pi]$
- 3. On veut résoudre dans \mathbb{R} l'équation : $\cos x + \sqrt{3} \sin x = -2$.
 - (a) Vérifier que : $\cos x + \sqrt{3}\sin x = 2\cos(x \frac{\pi}{3})$.
 - (b) Montrer que: $\cos x + \sqrt{3}\sin x = -2 \iff \cos(x \frac{\pi}{3}) = -1$
 - (c) En déduire les solutions de $\cos x + \sqrt{3}\sin x = -2$ dans \mathbb{R} .

Exercice 4:

1. Dans un repère orthonormal direct $(O; \overrightarrow{i}, \overrightarrow{j})$, placer les points suivants :

$$A(4;0), B(-2\sqrt{2};2\sqrt{2})$$
 et C tel que $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$.

- 2. Déterminer les coordonnées polaires de A et B.
- 3. Quelle est la nature du quadrilatère OACB? Déterminer les coordonnées polaires de C.
- 4. En déduire les valeurs exactes de $\cos \frac{3\pi}{8}$ et $\sin \frac{3\pi}{8}$.