Devoir de mathématiques n^o 13 - 1S7

7 mai 2009 - 2H

Exercice 1 4 points

- 1. Résoudre l'équation (E): $\cos 3x = \sin 2x$ dans l'intervalle $[0; \pi]$.
- $4\cos^3 x 2\cos x\sin x 3\cos x = 0.$ 2. Montrer que (E) est équivalente à :
- $\cos x = 0 \text{ ou } \begin{cases} X = \sin x \\ 4X^2 + 2X 1 = 0 \end{cases}$ 3. En déduire alors que (E) est équivalente à :
- 4. En déduire la valeur exacte de sin $\frac{\pi}{10}$

Exercice 2 3,5 points

Etudier le sens de variation des suites (u_n) , (v_n) et (w_n) , définies pour tout $n \in \mathbb{N}$ par :

1.
$$u_n = \sqrt{n^2 + 2}$$

$$2. \ v_n = \frac{n^2}{2^n}$$

2.
$$v_n = \frac{n^2}{2^n}$$
 3.
$$\begin{cases} w_0 = \frac{1}{2} \\ w_{n+1} = w_n (1 - w_n) \end{cases}$$

Exercice 3 2,5 points

On suppose que a, b et c sont, dans cet ordre, trois termes consécutifs d'une suite arithmétique. Déterminer ces nombres sachant que :

$$\left\{ \begin{array}{l} a+b+c=120\\ abc=59160 \end{array} \right.$$

Exercice 4 5 points

On considère la suite (u_n) définie, pour tout $n \in \mathbb{N}$, par :

$$u_0 = 0$$
 et $u_{n+1} = \frac{5u_n - 3}{u_n + 1}$

- 1. Calculer u_1 , u_2 et u_3 ; en déduire que (u_n) n'est ni arithmétique, ni géométrique.
- 2. On considère la suite (v_n) définie, pour tout $n \in \mathbb{N}$, par :

$$v_n = \frac{u_n - 3}{u_n - 1}$$

Démontrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$.

- 3. Exprimer v_n en fonction de n; en déduire l'expression de u_n en fonction de n.
- 4. Etudier la limite des suites (v_n) et (u_n) .

Exercice 5 5 points

Soient (u_n) et (v_n) définies pour tout entier naturel n, par :

$$u_n = \frac{1}{4}(2^n + 4n - 5)$$
 et $v_n = \frac{1}{4}(2^n - 4n + 5)$

- 1. Déterminer les variations des suites (u_n) et (v_n) .
- 2. Montrer que la suite (a_n) de terme général $a_n = u_n + v_n$ est géométrique; calculer sa somme $S_a(n) = a_0 + a_1 + ... + a_n$.
- 3. Montrer que la suite (b_n) de terme général $b_n = u_n v_n$ est arithmétique; calculer sa somme $S_b(n) = b_0 + b_1 + \dots + b_n$.
- 4. En déduire les sommes $S_u(n) = u_0 + u_1 + ... + u_n$ et $S_v(n) = v_0 + v_1 + ... + v_n$.