Devoir de mathématiques n^o 11 - 1èreS

9 mai 2011 - 1H

Exercice 1

Une machine remplit automatiquement des sachets d'épices. On prélève un échantillon de la production; après pesée, on obtient la distribution des masses de sachets suivante.

Masse en g	< 38	< 39	< 39, 5	< 40	< 40, 5	< 41	< 41, 5	< 42	< 42, 5	< 43	< 43, 5	< 44
Effectif	0	3	8	18	31	51	69	84	84	95	99	100

1. Compléter le nouveau tableau ci-dessous donnant les effectifs par classes.

Ī	Masse en g	[38; 39[[39; 39, 5[[39, 5; 40[[40; 40, 5[[40, 5; 41[
Ī	Effectif	3	5	10		

Masse en g	[41; 41, 5[[41, 5: 42[[42; 42, 5[[42, 5; 43[[43;44[
Effectif					5

(on arrondira au dixième)

- 2. Calculer la moyenne de cette série statistique.
- 3. Calculer l'écart-type de la distribution des masses des sachets d'épices.
- 4. La production de la machine est jugée bonne si la série des mesures de l'échantillon remplit les trois conditions suivantes :
 - la moyenne \overline{x} appartient à [40, 5; 41];
 - l'écart-type s est strictement inférieur à 2;
 - au moins 90 % de l'effectif figure dans $[\overline{x} 2s; \overline{x} + 2s]$.

La production est-elle bonne?

Exercice 2

Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, on considère le point A de coordonnées polaires $(2; \frac{\pi}{6})$, et les points B et C dont les coordonnées cartésiennes respectives sont $(-\sqrt{3}; -1)$ et (2; 0). Dans tout l'exercice, les angles seront données avec leur mesure principale.

- 1. Calculer les coordonnées polaires du point B : que peut-on dire des points O, A et B?
- 2. Soit I le milieu de [BC]; donner les coordonnées cartésiennes de I.
- 3. Quelle est la nature du triangle OBC? En déduire la mesure de l'angle $(\overrightarrow{i}, \overrightarrow{OI})$.
- 4. Donner les coordonnées polaires de I, et en déduire les valeurs exactes de $\cos(-\frac{5\pi}{12})$ et $\sin(-\frac{5\pi}{12})$. (il n'est pas demandé de simplifier au maximum $\sin(-\frac{5\pi}{12})$)

Exercice 3

- 1. On donne $\cos a = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $a \in [0; \frac{\pi}{2}[$: calculer $\cos 2a$ et en déduire a.
- 2. Résoudre sur $[0;2\pi[$, l'équation $\sqrt{3}+2\sin(x-\frac{\pi}{4})=0$
- 3. En utilisant les formules de duplication, factoriser l'expression : $A(x) = 1 + \cos 2x + \cos x$ et résoudre A(x) = 0 dans $]-\pi;\pi]$.
- 4. En utilisant les formules d'addition et de duplication, montrer que pour tout réel $x \neq \frac{k\pi}{2}$, avec $k \in \mathbb{Z}$,

$$\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x}$$

est une constante que l'on précisera.