Devoir de mathématiques n^o 12 - 1èreS

24 mai 2011 - le dernier! - 2H

Exercice 1 (5,5 points)

Etudier le sens de variation des suites (u_n) suivantes :

- 1. $u_n = n^2 3n + 1$ pour tout $n \in \mathbb{N}$.
- 2. $u_0 = 3$ et $u_{n+1} = 2u_n^2 + u_n + 3$ pour tout $n \in \mathbb{N}$.
- 3. $u_0 = 2$ et $u_{n+1} = -\frac{u_n}{5}$ pour tout $n \in \mathbb{N}$.
- 4. $u_n = \frac{3^{n+1}}{5^n}$ pour tout $n \in \mathbb{N}$.
- 5. $u_n = \frac{2^n}{n}$ pour tout $n \in \mathbb{N}^*$.

Exercice 2 (7,5 points)

- 1. (u_n) est une suite géométrique de raison q > 0 telle que $u_1 = 12$ et $u_5 = 3072$: calculer q puis u_7 .
- 2. (v_n) est une suite arithmétique de raison r telle que $v_1=-6$ et $v_1+v_2+\cdots+v_8=92$: calculer v_8 et r.
- 3. Déterminer 3 nombres a, b et c en progression arithmétique dont la somme est 27 et la somme des carrés est 261.
- 4. Calculer $2 + 5 + 8 + \cdots + 32 + 35$.
- 5. La suite (u_n) est géométrique de raison 2 et de premier terme $u_0=3$. Calculer n sachant que $u_0+u_1+\cdots+u_n=196605$.

Exercice 3 (7 points)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + 6}{u_n + 2} & \text{pour tout } n \in \mathbb{N} \end{cases}$$

- 1. Calculer u_1 et u_2 . Vérifier que (u_n) n'est ni arithmétique ni géométrique.
- 2. Soit $(v_n)_{n\in\mathbb{N}}$ définie par :

$$v_n = \frac{u_n - 2}{u_n + 3}$$

- (a) Montrer que (v_n) est une suite géométrique de raison $-\frac{1}{4}$.
- (b) Exprimer v_n en fonction de n.
- (c) Etudier la limite de la suite (v_n) .
- 3. Exprimer u_n en fonction de v_n .
- 4. Déterminer la limite de la suite (u_n) .