Devoir de mathématiques n^o 3 - 1èreS

18 octobre 2010 - 1h

Exercice 1

Résoudre les équations suivantes :

$$1) \ 4x^2 - 4x - 2 = 0$$

$$2) -\frac{3}{4}x^2 + 2x - 5 = 0$$

$$3) \ \frac{x}{2} - \frac{2}{x} = \frac{3}{2}$$

1)
$$4x^2 - 4x - 2 = 0$$
 2) $-\frac{3}{4}x^2 + 2x - 5 = 0$ 3) $\frac{x}{2} - \frac{2}{x} = \frac{3}{2}$ 4) $\frac{3x^2 + 10x + 8}{x + 2} = 2x + 5$

Exercice 2

Résoudre les inéquations suivantes :

1)
$$x^2 - 8x + 7 \ge 0$$

$$2) -3x^2 + 6x - 3 \ge 0$$

1)
$$x^2 - 8x + 7 \ge 0$$
 2) $-3x^2 + 6x - 3 \ge 0$ 3) $\frac{2x^2 + 5x + 3}{x^2 + x - 2} > 0$ 4) $\frac{x+3}{x-4} \ge \frac{1}{x}$

$$4) \frac{x+3}{x-4} \ge \frac{1}{x}$$

Exercice 3

(bonus) Soit l'équation (E) d'inconnue x:

$$x^2 + (m+1)x + (m+1) = 0$$

où m désigne un réel quelconque.

- 1. Calculer Δ_m le discriminant de l'équation en fonction de m.
- 2. Pour quelle(s) valeur(s) de m, l'équation admet-elle une seule racine? La calculer.
- 3. Pour quelle(s) valeur(s) de m, l'équation admet-elle deux racines distinctes? Dans ce cas, écrire la somme et le produit de ces racines.
- 4. Pour quelle(s) valeur(s) de m, $x^2 + (m+1)x + (m+1) > 0$ sur \mathbb{R} ?