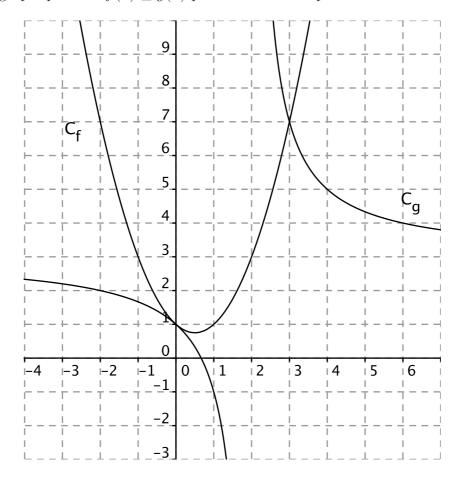
Devoir de mathématiques n^o 5 - 1èreS

2 dec 2010 - 1H


Exercice 1 (7 points)

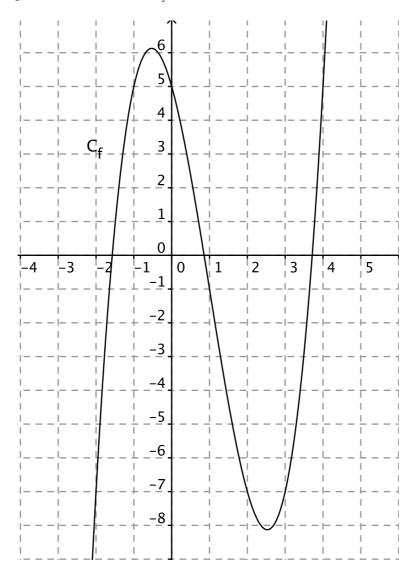
Soient f et g les fonctions définies respectivement sur \mathbb{R} et sur $\mathbb{R}\setminus\{2\}$ par :

$$f(x) = x^2 - x + 1$$
 $g(x) = \frac{3x - 2}{x - 2}$

ci-dessous, C_f et C_g , leurs courbes représentatives.

- 1. Résoudre graphiquement l'équation f(x) = 3.
- 2. Résoudre algébriquement f(x) = g(x) puis interpréter graphiquement.
- 3. Résoudre graphiquement $f(x) \leq g(x)$ puis le démontrer par le calcul.

Exercice 2 (6 points)


Soit $f(x) = \frac{x^2 + 3}{x + 1}$ définie sur $\mathbb{R} \setminus \{-1\}$

- 1. Montrer que \mathscr{C}_f , la courbe représentative de f, admet pour centre de symétrie I(-1;-2).
- 2. Déterminer les réels a et b tels que : $f(x) = ax + b + \frac{c}{x+1}$.
- 3. Etudier la position relative de \mathscr{C}_f et de la droite \mathscr{D} d'équation y=ax+b.

Exercice 3 (7 pts)

On donne $f(x) = x^3 - 3x^2 - 4x + 5$, et \mathcal{C}_f sa courbe représentative ci-jointe.

- 1. Tracer la droite $\mathcal D$ d'équation y=2x-3 sur le graphique ci-joint.
- 2. Soit P(x) = f(x) (2x 3) pour tout $x \in \mathbb{R}$
 - (a) Vérifier que 1 est racine de P et factoriser P(x).
 - (b) Déterminer les coordonnées des points d'intersection de \mathscr{C}_f et $\mathscr{D}.$
 - (c) Etudier la position relative de \mathscr{C}_f et $\mathscr{D}.$

