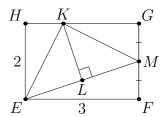
Devoir de mathématiques n^o 9 - 1èreS

8 mars 2011 - 1H30

Exercice 1


Dans un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$, on considère les points A(-1; -2), B(2; 4) et C(6; 2).

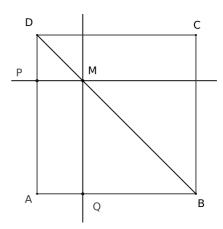
- 1. Déterminer une mesure de l'angle \widehat{BAC} , arrondie au degré.
- 2. Montrer que ABC est un triangle rectangle en B.

Exercice 2

EFGH est un rectangle avec EH=2 et EF=3. M est le milieu de [FG], et K est défini par $\overrightarrow{HK}=\frac{1}{3}\overrightarrow{HG}$; L est le projeté orthogonal de K sur (EM).

- 1. Montrer que $\overrightarrow{EK}.\overrightarrow{EM}=5$ (décomposer chaque vecteur par la relation de Chasles).
- 2. En écrivant le produit scalaire $\overrightarrow{EK}.\overrightarrow{EM}$ de deux manières différentes, déterminer :
 - (a) la longueur EL
 - (b) une mesure de l'angle \widehat{KEM} en radians

Exercice 3


Soient deux points du plan A et B tels que AB = 6.

- 1. (a) Déterminer l'ensemble \mathcal{E}_1 des points M du plan tels que $\overrightarrow{AB}.\overrightarrow{AM}=10$
 - (b) Déterminer l'ensemble \mathscr{E}_2 des points M du plan tels que $\overrightarrow{AB}.\overrightarrow{AM}=-12$
- 2. (a) Déterminer l'ensemble \mathscr{F}_1 des points M du plan tels que $\overrightarrow{MA}.\overrightarrow{MB}=0$
 - (b) Déterminer l'ensemble \mathscr{F}_2 des points M du plan tels que $\overrightarrow{MA}.\overrightarrow{MB} = -9$
 - (c) Déterminer l'ensemble \mathscr{F}_3 des points M du plan tels que $\overrightarrow{MA}.\overrightarrow{MB}=1$
- 3. Construire tous les ensembles sur une même figure.

Exercice 4

ABCD est un carré de côté 1, et M est un point de la diagonale [BD]. On note P le projeté orthogonal de M sur (AD), et Q le projeté orthogonal de M sur (AB).

Le but est de montrer que les droites (CP) et (DQ) sont perpendiculaires.

Première méthode : Dans le repère orthonormal $(A; \overrightarrow{AB}, \overrightarrow{AD})$, on pose $\overrightarrow{DM} = x\overrightarrow{DB}$.

- 1. Déterminer les coordonnées de tous les points de la figure.
- 2. Calculer $\overrightarrow{CP}.\overrightarrow{DQ}$ et conclure.

Deuxième méthode:

- 1. Justifier que $\overrightarrow{DP}.\overrightarrow{DA} = \overrightarrow{AQ}.\overrightarrow{AB}$
- 2. En déduire que $\overrightarrow{CP}.\overrightarrow{DQ}=0$ et conclure.