Devoir de mathématiques n^o 12 - 1èreS

23 mai 2012 - 2h

ROC "restitution organisée de connaissances" : 2 points

q est un réel non nul et différent de 1.

Pour tout entier naturel n, on note $S_n = 1 + q + q^2 + q^3 + \cdots + q^n$.

Montrer que pour tout entier naturel n: $S_n = \frac{1 - q^{n+1}}{1 - q}$

Exercice 1 (4 points)

- 1. Etudier le sens de variation de la suite (u_n) définie par $u_0 = 3$ et $u_{n+1} = 2u_n^2 + u_n + 3$ pour tout $n \in \mathbb{N}$.
- 2. (u_n) est une suite géométrique de raison q > 0 telle que $u_1 = 12$ et $u_5 = 3072$: calculer q puis u_7 .
- 3. Calculer $2+5+8+\cdots+299+302$.
- 4. En utilisant une suite géométrique dont on précisera la raison et le 1er terme, calculer $1+2+4+8+\cdots+32768$.

Exercice 2 5,5 points

Le 1er janvier 2012, on a placé 5000 euros à intérêts composés au taux annuel de 4%.

(cela signifie que les intérêts ajoutés au capital à chaque nouvelle année représentent 4% du capital de l'année précédente)

Chaque 1er janvier, on place 200 euros supplémentaires sur ce compte.

On note $C_0=5000$ le capital disponible au 1er janvier de l'année 2012,

et C_n le capital disponible au 1er janvier de l'année 2012 + n.

- 1. Calculer les valeurs exactes de C_1 et C_2 .
- 2. Justifier que pour tout entier n, on a $C_{n+1} = 1,04C_n + 200$.
- 3. Justifier que la suite (C_n) n'est ni arithmétique, ni géométrique.
- 4. Pour tout entier n, on pose $v_n = C_n + 5000$.
 - (a) Calculer v_0 ; montrer que (v_n) est une suite géométrique.
 - (b) En déduire l'expression de v_n puis de C_n en fonction de n.

Pour les questions suivantes, toute démarche sera prise en compte dans l'évaluation.

- 5. Calculer le capital disponible à la fin de l'année 2020, arrondi à l'euro près.
- 6. Quel nombre minimal d'années devra-t-on attendre pour que le capital disponible dépasse 10 000 euros?

Exercice 3 5,5 points

Soient (u_n) et (v_n) définies pour tout entier naturel n, par :

$$u_n = \frac{1}{4}(2^n + 4n - 5)$$
 et $v_n = \frac{1}{4}(2^n - 4n + 5)$

- 1. Calculer u_0 , u_1 , v_0 et v_1 .
- 2. Montrer que la suite (a_n) de terme général $a_n=u_n+v_n$ est géométrique de raison 2 ; calculer sa somme $S_a(n)=a_0+a_1+\ldots+a_n$.
- 3. Montrer que la suite (b_n) de terme général $b_n = u_n v_n$ est arithmétique de raison 2; calculer sa somme $S_b(n) = b_0 + b_1 + ... + b_n$.
- 4. En déduire les sommes $S_u(n)=u_0+u_1+\ldots+u_n$ et $S_v(n)=v_0+v_1+\ldots+v_n$.

Les suites (u_n) , (v_n) et (w_n) sont définies pour tout entier naturel n, par :

$$u_n = 1 - 3n$$
; $v_0 = \frac{4}{9} \text{ et } v_{n+1} = \frac{3v_n}{2}$; $w_n = \frac{n^2}{2^n}$

1. Compléter le tableau suivant :

n	0	1	2	3	4
u_n					
v_n					
w_n					

- 2. Démontrer que la suite (u_n) est strictement décroissante.
- 3. Démontrer que la suite (v_n) est strictement croissante.
- 4. On veut démontrer que la suite (w_n) est décroissante à partir du rang 3.
 - (a) Etudier le signe de $f(x) = -x^2 + 2x + 1$ sur $[0; +\infty[$.
 - (b) Montrer que, pour tout entier naturel n, on a : $w_{n+1} w_n = \frac{-n^2 + 2n + 1}{2^{n+1}}$
 - (c) En déduire que si $n \geq 3$ alors $w_{n+1} \geq w_n$ et conclure.