
Devoir de mathématiques n^o 6 - 1èreS

18 janvier 2012 - 1h

Exercice 1 (5,5 points)

Voici la courbe représentative C_f d'une fonction f définie sur \mathbb{R} .

D'après le graphique

- 1. Donner la valeur de f'(-4) en justifiant; puis f'(-5), f'(-2) et f'(4) (sans justifier).
- 2. Déterminer l'équation de la tangente à \mathscr{C}_f au point d'abscisse -2.
- 3. On sait que $f'(7) = -\frac{1}{3}$; tracer T_7 , tangente à la courbe C_f au point d'abscisse 7.
- 4. Résoudre graphiquement f'(x) > 0.

Exercice 2 (3 pts)

Question de cours :

La fonction f est définie sur \mathbb{R} par $f(x) = x^2$.

Démontrer que f'(x) = 2x pour tout réel x.

Exercice 3 (11,5 pts)

- 1. La fonction f est définie et dérivable sur \mathbb{R} par $f(x) = \frac{2x^3}{3} + x^2 12x + 4$
 - (a) Calculer f'(x).
 - (b) Etudier le signe de f'(x) puis dresser le tableau de variation de f.
 - (c) Donner l'équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse 1.
- 2. La fonction g est définie par $g(x) = 2x^2\sqrt{x}$
 - (a) Déterminer l'ensemble de définition ${\cal D}_g$ de g.
 - (b) Justifier que g est dérivable sur $]0; +\infty[$.
 - (c) Calculer g'(x) sur $]0; +\infty[$.
- 3. La fonction h est définie sur $D_h = \mathbb{R} \setminus \{2\}$ par $h(x) = \frac{6-2x}{3x-6}$.
 - (a) Justifier que h est dérivable sur D_h .
 - (b) Calculer h'(x).
 - (c) En déduire le tableau de variation de h

.