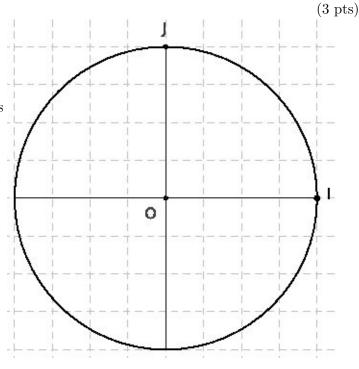
Devoir de mathématiques n^o 8 - 1èreS

15 février 2012 - 2h

Exercice 1


Déterminer la mesure principale des angles, puis les placer sur le cercle trigonométrique ci-joint.

2.
$$\frac{33\pi}{4}$$

3.
$$\frac{-17\pi}{6}$$

4.
$$\frac{-75\pi}{8}$$

Exercice 2 (3 pts)

En utilisant les angles associés, exprimer les expressions suivantes en fonction de $\cos x$ et $\sin x$:

1.
$$A = \cos(x - \pi) - \sin(\pi - x) + \cos(\pi + x) - \sin(-x)$$

2.
$$B = \sin x + \cos(x + \frac{\pi}{2}) + \cos x - \sin(x + \frac{\pi}{2})$$

Calculer les expressions suivantes en utilisant les angles associés :

3.
$$C = \sin \frac{3\pi}{8} + \sin \frac{5\pi}{8} + \sin \frac{11\pi}{8} + \sin \frac{13\pi}{8}$$

3.
$$C = \sin \frac{3\pi}{8} + \sin \frac{5\pi}{8} + \sin \frac{11\pi}{8} + \sin \frac{13\pi}{8}$$
 4. $D = \cos \frac{\pi}{10} + \cos \frac{2\pi}{5} + \cos \frac{3\pi}{5} + \cos \frac{9\pi}{10}$

Exercice 3 (6 pts)

Résoudre les équations et les inéquations suivantes :

1. Sur
$$[0; 3\pi[: \cos x = \frac{1}{2}]$$

3. Sur
$$[0; 4\pi[: \cos x = \cos \frac{2\pi}{3}]$$

5. Sur
$$]-\pi;\pi]:6-12\cos x>0$$

7. Sur
$$]-\pi;\pi]: 2\sin^2 x - \sin x - 1 = 0$$

2. Sur
$$]-\pi;\pi]:\sin x=-\frac{\sqrt{2}}{2}$$

4. Sur
$$[0; 2\pi[:\cos^2 x = \frac{3}{4}]$$

6. Sur
$$]-\pi; 2\pi] : \sin x \leqslant \frac{\sqrt{3}}{2}$$

8. Sur
$$] - \pi; \pi] : \sin 2x = \sin \frac{\pi}{4}$$

(8 pts)

Remarque : Les parties B et C peuvent être traitées indépendamment de la partie A.

Partie A (2,5 points)

On considère la fonction f définie sur $]0; +\infty[$ et on note C_f sa courbe représentative.

 C_f passe par le point A de coordonnées (1;1).

 C_f admet la droite (d) d'équation y = -x + 2 pour tangente au point A.

- 1. En utilisant les données du texte et en justifiant la réponse, déterminer f(1) et f'(1).
- 2. f est de la forme $f(x) = \frac{x^2 + ax + b}{x}$; exprimer f'(x) en fonction des coefficients a et b.
- 3. En déduire la valeur des coefficients a et b.

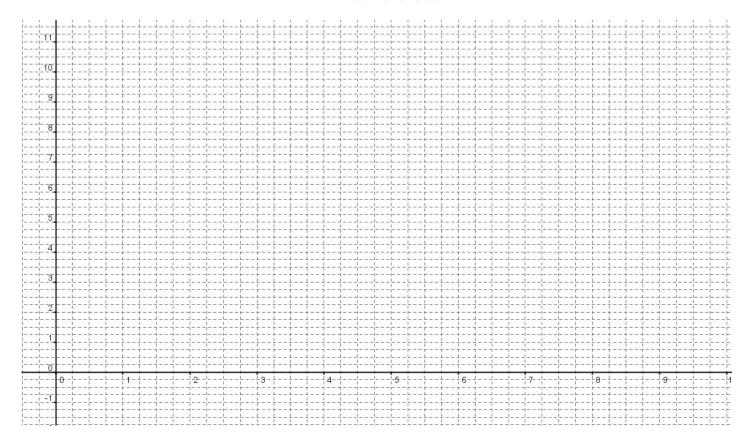
Partie B (4,5 points)

On suppose pour la suite que a=-2 et b=2 et on a alors $f(x)=\frac{x^2-2x+2}{x}$ définie sur $]0;+\infty[$.

- 1. Etudier les variations de f puis dresser son tableau de variations. Donner la valeur exacte du minimum puis sa valeur arrondie aux centièmes.
- 2. Déterminer l'équation réduite de la tangente (d_1) à la courbe au point d'abscisse 2.
- 3. Dans le repère donné en annexe, tracer C_f , (d) et (d_1) .

Partie C (1 point)

Une entreprise fabrique des jouets en plastique.


La fonction f représente le coût moyen **unitaire** de production en euros en fonction du **nombre** x **de milliers** de jouets produits par jour, c'est-à-dire le **coût de production d'un millier** de jouets quand l'entreprise en produit x milliers chaque jour.

On suppose que toute la production est vendue, et que chaque jouet est vendu 2 euros.

Déterminer le nombre de jouets arrondi à l'unité, que l'entreprise doit produire chaque jour, pour que le coût moyen de production soit minimum.

Quel est alors le bénéfice journalier arrondi à l'euro de l'entreprise?

ANNEXE de l'exercice 1

