Devoir n°2 - Applications du Second degré - Vecteurs - 1S

11 octobre 2013 - 2h

Exercice 1 (5,5 pts) : Résoudre dans \mathbb{R}

1)
$$x - 5\sqrt{x} - 14 = 0$$

2)
$$\sqrt{x+5} = 1-x$$

1)
$$x - 5\sqrt{x} - 14 = 0$$
 2) $\sqrt{x+5} = 1-x$ 3) $\sqrt{x^2 - x - 6} = \sqrt{x-1}$

Exercice 2 (2.5 pts):

La somme du carré d'un nombre et du carré de son inverse est égale à $\frac{97}{36}$ Quel(s) est(sont) ce(s) nombre(s)?

Exercice 3 (4 pts):

On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4x^3 + 9x^2 - 16x - 36$

- 1. Montrer que -2 est racine de f; en déduire la factorisation de f(x).
- 2. Résoudre l'équation f(x) = 0.
- 3. Résoudre l'inéquation f(x) > 0.

Exercice 4 (6 pts):

ABC est un triangle, I est le milieu de [AB], J et L sont les points tels que :

$$\overrightarrow{BJ} = \frac{3}{5}\overrightarrow{BC}, \quad \text{et } \overrightarrow{AL} = 3\overrightarrow{AC}$$

- 1. Construire une figure.
- 2. Méthode vectorielle :
 - a) Exprimer \overrightarrow{IL} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - b) Exprimer \overrightarrow{IJ} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - c) Les points I, J et L sont-ils alignés?
- 3. Méthode analytique : On considère le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$.
 - a) Donner les coordonnées des points A, B, C, I et L.
 - b) Exprimer le vecteur \overrightarrow{AJ} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} ; en déduire les coordonnées du point J.
 - c) Les points I, J et L sont-ils alignés?

Exercice 5 (2 pts):

Soit \mathcal{P} la parabole d'équation : $y = x^2 - 3x - 4$

Pour tout réel m, on appelle \mathcal{D}_m la droite d'équation : y = -mx - 5

Déterminer les valeurs de m pour lesquelles :

- 1. \mathcal{D}_m coupe \mathcal{P} en seul point.
- 2. \mathcal{D}_m coupe \mathcal{P} en deux points distincts.
- 3. \mathcal{D}_m ne coupe pas \mathscr{P} .

Aide : Pour cela, on montrera que le problème revient à résoudre l'équation : (E) : $x^2 + (m-3)x + 1 = 0$, et on calculera Δ_m .