Devoir n°9 - Applications du Produit Scalaire - Suites - 1S

28 mars 2014 - 2 h

Exercice 1 (3 pts) : Dans un repère orthonormé du plan, on donne la droite \mathscr{D} d'équation 2x - 5y + 3 = 0.

- 1. Déterminer un vecteur directeur de \mathcal{D} .
- 2. Déterminer une équation de la droite Δ perpendiculaire à \mathcal{D} passant par le point A(-1;6).
- 3. Déterminer une équation du cercle \mathscr{C} de diamètre [AB] avec B(1;1).
- 4. Justifier que \mathscr{C} et \mathscr{D} sont tangents.

Exercice 2 (6 pts) : Dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, on donne les points A(2;1) et B(-1;4). Pour tout point M(x;y), on pose $h(M) = 2MA^2 + MB^2$.

- 1. Vérifier que $h(M) = 3(x^2 + y^2 2x 4y + 9)$.
- 2. On note \mathcal{E}_k l'ensemble des points M tels que h(M)=k où k est un réel donné.
 - a) Montrer que \mathcal{E}_9 est l'ensemble vide.
 - b) Montrer que \mathcal{E}_{27} est le cercle \mathcal{C} de centre E(1;2) de rayon $\sqrt{5}$, puis le tracer.
- 3. Déterminer une équation du cercle \mathscr{C}' de centre F(-4;2) de rayon $\sqrt{10}$; tracer \mathscr{C}' .
- 4. Déterminer les coordonnées des points I et J intersections des cercles $\mathscr C$ et $\mathscr C'$.

Exercice 3 (3 pts) : Soient A et B deux points du plan tels que AB = 5. On cherche à déterminer l'ensemble \mathscr{E} des points M du plan tels que $MA^2 - MB^2 = 10$.

- 1. On note I le milieu de [AB]; démontrer que $M \in \mathscr{E} \Leftrightarrow \overrightarrow{AB}.\overrightarrow{IM} = 5$.
- 2. Soit H le projeté orthogonal du point M sur (AB); montrer que $M \in \mathscr{E} \Leftrightarrow IH = 1$. En déduire la nature de l'ensemble \mathscr{E} .

Exercice 4 (3 pts) : Les deux questions sont indépendantes.

- 1. Montrer que pour tout réel $x : \cos(x \frac{\pi}{6}) = \sin(x + \frac{\pi}{3})$
- 2. On donne $\cos x = \frac{\sqrt{2-\sqrt{2}}}{2}$ et $x \in [-\frac{\pi}{4}; 0]$. Calculer $\sin x$, puis $\sin 2x$; en déduire la valeur exacte de 2x, puis celle de x.

Exercice 5 (5 pts):

- 1. (u_n) est une suite arithmétique de premier terme u_0 et de raison r telle que $u_5 = 13$ et $u_{11} = 31$. Déterminer u_0 et r.
- 2. Calculer $S = -5 3 1 + 1 + \cdots + 43 + 45$ en utilisant une suite arithmétique à préciser.
- 3. Etudier les variations des suites suivantes :
 - a) (u_n) définie par $u_n = \frac{3^n}{n}$ pour $n \in \mathbb{N}$ *.
 - b) (v_n) définie par $v_0 = -4$ et $v_{n+1} = v_n + n^2 n + 3$ pour $n \in \mathbb{N}$.