Devoir n°13 - Géométrie Repérée - 1ère spé maths

24 avril 2020 - 1h

Exercice 1 (7 pts) : Le plan est rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

- 1. Soit \mathcal{D} la droite d'équation 3x y + 5 = 0 et soit A le point de coordonnées (-1;3).
 - a) Déterminer une équation de la droite \mathcal{D}_1 parallèle à \mathcal{D} passant par A.
 - b) Déterminer une équation de la droite \mathcal{D}_2 perpendiculaire à \mathcal{D} passant par A.
- 2. a) Déterminer une équation du cercle \mathscr{C} de centre I(3;-1) et de rayon 4.
 - b) Déterminer une équation du cercle \mathscr{C}' de diamètre [BC] avec B(-2;1) et C(4;-1).

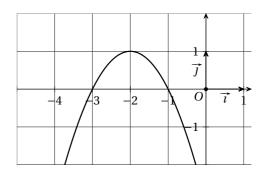
Exercice 2 (8 pts) : Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, on considère les points A(6; 0) et B(8; 4).

- 1. Soit $\mathscr C$ le cercle d'équation $x^2 6x + y^2 8y = 0$: justifier que $\mathscr C$ est le cercle circonscrit au triangle OAB, puis déterminer son centre I et son rayon.
- 2. Soit Δ la droite d'équation x-y+6=0; calculer les coordonnées des points d'intersection de la droite Δ et du cercle \mathscr{C} .
- 3. Déterminer une équation de la tangente au cercle \mathscr{C} au point E(6;8).

Exercice 3 (5 pts):

On considère la parabole \mathscr{P} ci-contre d'équation $y = ax^2 + bx + c$, avec $a, b, c \in \mathbb{R}$ tels que $a \neq 0$.

A l'aide des informations du graphique, déterminer les valeurs des coefficients a, b et c.



Exercice 4 (Bonus: à faire en DM):

Le plan est muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$. On note \mathscr{E} l'ensemble des points M(x; y) tels que :

$$x^2 + y^2 - 6x - 6y - 7 = 0$$

On complètera la figure au fur et à mesure.

- 1. Montrer que $\mathscr E$ est un cercle dont on précisera le centre et le rayon.
- 2. Déterminer l'équation cartésienne du cercle $\mathscr C$ de centre $A(-2;\frac{1}{2})$ de rayon $\frac{5}{2}$.
- 3. Déterminer les coordonnées des points d'intersection de $\mathscr E$ et $\mathscr E$; on notera I celui dont l'ordonnée est la plus grande, et J l'autre point.
- 4. a) Déterminer une équation de la tangente à \mathscr{E} en J; on note T_J cette droite.
 - b) Déterminer une équation de la tangente à $\mathscr C$ en J; on note T_J' cette droite.
 - c) Montrer que ces deux droites sont perpendiculaires (On dit que les cercles sont orthogonaux).