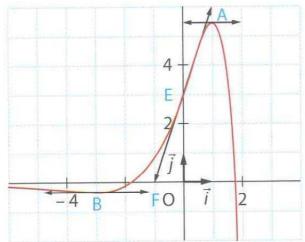
Devoir n°15 - Fonction Exponentielle - 1ère spé maths

22 mai 2020 - 1h

Exercice 1 (6 pts) : La courbe $\mathscr C$ représente une fonction f définie et dérivable sur $]-\infty;2]$, et certaines de ses tangentes.



- 1. Par lecture graphique, déterminer :
 - a) les valeurs de f(0), f'(1), f'(-3) et f'(0),
 - b) une équation de la tangente à \mathscr{C} au point E.
 - c) les solutions de l'équation f(x) = 0.
- 2. On donne $f(x) = (ax^2 + bx + c)e^x$, avec a, b et $c \in \mathbb{R}$.
 - a) Déterminer f'(x) sur $]-\infty; 2]$.
 - b) A l'aide des données de la question 1, déterminer a, b et c.

Exercice 2 (5 pts):

1. Soit f la fonction définie dérivable sur \mathbb{R} par

$$f(x) = (x-2)e^{-2x+6} + 3$$

- a) Déterminer une expression de la dérivée de f.
- b) Etudier le sens de variation de f.
- 2. Le bénéfice (en millions d'euros) d'une grande entreprise en fonction de la quantité x (en tonnes) de métal vendue est donnée par la fonction f.
 - a) Quelle quantité minimale doit vendre l'entreprise pour réaliser un bénéfice?
 - b) Quel est le bénéficie maximal? Pour quelle quantité de métal vendue?

Exercice 3 (6 pts) : Soit f la fonction définie sur $]0; +\infty[$ par

$$f(x) = \frac{x+1}{e^x - 1}$$

- 1. Soit $g(x) = -xe^x 1$ pour tout réel $x \in [0; +\infty[$.
 - a) Etudier le sens de variation de g.
 - b) Calculer g(0), et en déduire le signe de g(x).
- 2. Déterminer f'(x) sur $]0; +\infty[$, et montrer que f' a le même signe que g.
- 3. En déduire les variations de f.

Exercice 4 (3 et + Bonus) : Soient f et g définie sur \mathbb{R} par

$$f(x) = xe^{-x}$$
 et $g(x) = xe^{-x} - 2x$

Soient \mathscr{C}_f et \mathscr{C}_g leurs courbes représentatives dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

Que peut-on dire des tangentes à \mathcal{C}_f et \mathcal{C}_g au point O?