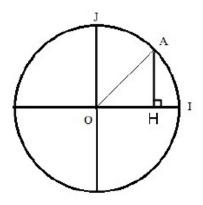
Devoir n°6 - Trigonométrie - Optimisation - 1ère spé maths

18 décembre 2019 - 1h

Exercice 1 (3,5 pts) : Démonstration de cours

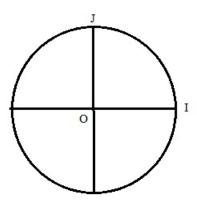
Sur le cercle trigonométrique ci-contre, on a placé le point A tel que $\widehat{IOA}=45^{\circ}$.

- 1. Donner la mesure de \widehat{IOA} en radians.
- 2. On note H le pied de la hauteur issue de A dans IOA: quelle est la nature du triangle OHA?
- 3. En déduire la valeur de $\cos\left(\frac{\pi}{4}\right)$ puis $\sin\left(\frac{\pi}{4}\right)$



Exercice 2 (3,5 pts):

- 1. Rappeler les valeurs exactes de $\cos\left(\frac{\pi}{6}\right)$ et $\sin\left(\frac{\pi}{6}\right)$
- 2. En utilisant la valeur de $sin\left(\frac{\pi}{6}\right)$ et en laissant les tracés en pointillés, placer sur le cercle trigonométrique ci-contre les mesures $\frac{5\pi}{6}$, $\frac{-\pi}{6}$ et $\frac{7\pi}{6}$.
- 3. En déduire les valeurs exactes du cosinus et du sinus de chacun des angles ci-dessus.

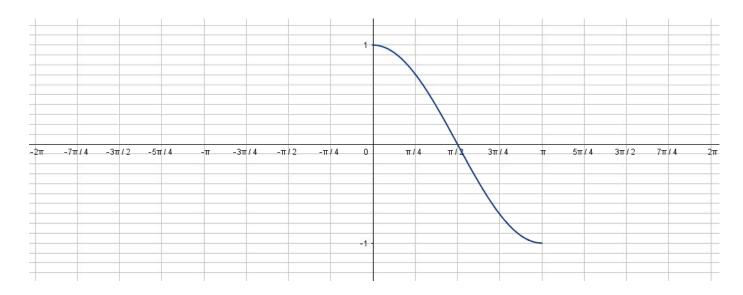


Exercice 3 (3 pts) : On donne $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$

Calculer $\sin\left(\frac{\pi}{8}\right)$

Exercice 4 (6 pts):

- 1. Résoudre dans] $-\pi;\pi]$ l'équation $sin(x)=\frac{\sqrt{3}}{2}$
- 2. La fonction f est définie sur \mathbb{R} par f(x) = cos(x)
 - a) Résoudre l'équation $cos(x) = \frac{-\sqrt{2}}{2}$
 - b) Rappeler (sans justifier) les propriétés de la fonction \cos (parité, périodicité)
 - c) On donne ci-dessous la représentation graphique de la fonction f sur $[0; \pi]$. Compléter (en rouge) le tracé sur $[-\pi; 0]$ en précisant la propriété de la fonction cosinus utilisée.



- d) Compléter (au crayon) le tracé sur $[-2\pi; 2\pi]$ en précisant la propriété de la fonction cosinus utilisée.
- e) Retrouver graphiquement les solutions de l'équation $cos(x) = \frac{-\sqrt{2}}{2}$ (faire apparaître les tracés sur le graphique)

Exercice 5 (4 pts):

Partie A (4 pts) : On considère la fonction f définie sur $[0; +\infty[$ par

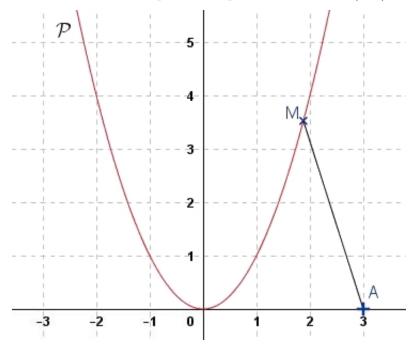
$$f(x) = x^4 + x^2 - 6x + 9$$

- 1. Montrer que $f'(x) = (x-1)(4x^2 + 4x + 6)$
- 2. Quel est le signe de $4x^2 + 4x + 6$?
- 3. Etudier le signe de f'(x) et dresser le tableau de variation de f.

BONUS: Partie B (2 pts):

On rappelle que $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ dans un repère orthonormé.

Dans un repère orthonormé, on considère la parabole \mathcal{P} d'équation $y=x^2$, et M est un point de \mathcal{P} d'abscisse $x\geq 0$. Le point A a pour coordonnées (3;0).



- 1. Exprimer AM^2 en fonction de x.
- 2. En déduire la position du point M pour que la distance AM soit minimale.