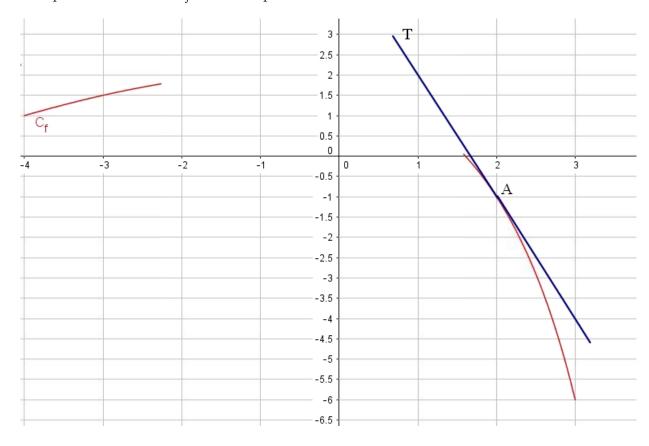
Devoir $n^{\underline{0}}4$ - Dérivation - 1ère spé maths


26 novembre 2020 - 30 min

Exercice 1 (10 pts) : La fonction f est définie et dérivable sur [-4; 3] par

$$f(x) = \frac{x^2 + 4x - 9}{x - 5}$$

On note C_f sa représentation graphique de f et T la tangente à la courbe au point d'abscisse 2.

- 1. Déterminer graphiquement f'(2) (justifier brièvement)
- 2. Montrer que $f'(x) = \frac{x^2 10x 11}{(x 5)^2}$
- 3. Etudier le signe de f'(x) et dresser le tableau de variation de f. (les racines du polynôme $P(x)=x^2-10x-11$ sont $x_1=11$ et $x_2=-1$)
- 4. La fonction f admet-elle un maximum? un minimum? sur [-4;3]?
- 5. Déterminer l'équation réduite de la tangente T^\prime à la courbe C_f au point B d'abscisse 1.
- 6. Compléter le tracé de C_f dans le repère ci-dessous et tracer T^\prime .

