Devoir $n^{\underline{a}9}$ - Fonction Exponentielle - 1ère spé maths

15 mars 2022 - 1h

Exercice 1 (3 pts) : Résoudre dans \mathbb{R}

1.
$$e^{-2x-1} > 1$$

2.
$$e^x e^2 = e^{3x+2}$$

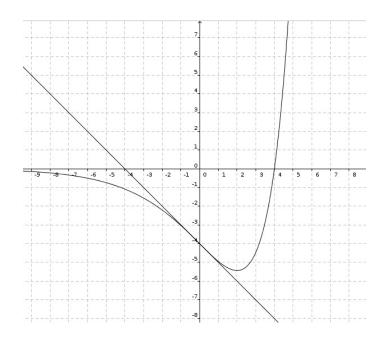
Exercice 2 (8,5 pts):

- 1. Soit $f(x) = 3e^{-x} + 4x 1$ définie et dérivable sur \mathbb{R} : calculer sa fonction dérivée.
- 2. Soit $g(x) = (x^2 3)e^x$ définie et dérivable sur \mathbb{R} : calculer sa fonction dérivée, puis dresser le tableau de variations de la fonction g (les limites ne sont pas demandées)
- 3. Soit $h(x) = \frac{e^{4x}}{x}$ définie et dérivable sur \mathbb{R}^* : calculer sa fonction dérivée, puis dresser le tableau de variations de la fonction h (les limites ne sont pas demandées)

Exercice 3 (8,5 pts):

Dans le plan muni d'un repère orthogonal, la courbe $\mathcal C$ ci-contre représente une fonction f définie et dérivable sur $\mathbb R$.

On a tracé la tangente \mathcal{T} à la courbe \mathcal{C} au point A(0; -4).



On désigne par f' la fonction dérivée de f.

- 1. a) Donner la valeur de f(0).
 - b) Déterminer la valeur de f'(0).
- 2. a) On admet qu'il existe deux réels a et b tels que, pour tout réel x, $f(x) = (ax + b)e^{0.5x}$. Vérifier que pour tout réel x, $f'(x) = \frac{1}{2}(ax + 2a + b)e^{0.5x}$.
 - b) Utiliser les résultats précédents pour déterminer les valeurs exactes des réels a et b.

Partie B: On considère maintenant la fonction f définie pour tout réel x par

$$f(x) = (x-4)e^{0.5x}$$

- 1. Donner l'expression de f'(x) pour tout réel x; en déduire le sens de variation de la fonction f sur \mathbb{R} . Donner la valeur exacte de l'extremum de f puis sa valeur arrondie aux dixièmes.
- 2. Donner l'équation réduite de la tangente T au point d'abscisse 3 puis la tracer dans le repère.