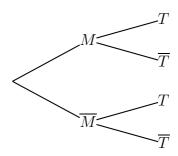
Devoir $n^{\underline{o}3}$ - Probabilités - Second degré - 1ère spé maths

20 dec 2023 - 55 min

Exercice 1 (6 pts) : Un test de dépistage d'une maladie est mis en vente. Le mode d'emploi précise :

- pour une personne n'étant pas malade, le test est néanmoins positif (c'est-à-dire désigne cette personne comme malade) dans 2,5% des cas;
- pour une personne malade, le test est néanmoins négatif (c'est-à-dire désigne cette personne comme non malade) dans 0.1% des cas.

On supppose qu'une maladie touche 2% de la population d'un pays, et qu'on décide de faire passer le test à tous les habitants.


On considère, pour un habitant donné, les évènements :

M: «Cet habitant est malade.»

 $T: \ll Le \ test \ est \ positif. \gg$

On arrondira les probabilités à 10^{-4} .

1. Compléter l'arbre pondéré ci-contre, modélisant la situation.

- 2. Calculer la probabilité que l'habitant soit malade et que le test soit positif.
- 3. Calculer la probabilité que le test soit positif.
- 4. Sachant que le test est positif, calculer la probabilité que la personne soit malade. Peut-on dire que ce test est efficace?

Exercice 2 (4 pts): Dans un magasin de meubles, il y a 55% de canapés dont 14% sont en cuir, 30% de fauteuils dont 20% sont en cuir, et le reste est constitué de poufs dont 42% sont en cuir.

Un client se présente et choisit un meuble.

On considère les évènements :

A : «Le meuble est un canapé.»

F: «Le meuble est un fauteuil.»

P: «Le meuble est un pouf.»

C : «Le meuble est en cuir.»

%	A	F	P	Total
С				
\overline{C}				
Total				100

- 1. Compléter le tableau ci-dessus.
- 2. Les évènements F et C sont-ils indépendants?

Exercice 3 (5 pts): Soit m un réel, et soit la fonction f définie sur \mathbb{R} par

$$f(x) = (m-1)x^2 + 2mx + 1 - 3m$$

- 1. A quelle condition f est une fonction polynôme du second degré?
- 2. Montrer que, quelle que soit la valeur de m, 1 est racine de f.
- 3. Discuter du nombre de solutions de l'équation f(x) = 0 suivant les valeurs de m.

Exercice 4 (5 pts): Soit la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{2x+4}{x-1}$, et soit g(x)=x+2 définie sur \mathbb{R} .

- 1. Soit h la fonction définie sur $\mathbb{R}\setminus\{1\}$ par h(x)=f(x)-g(x). Montrer que $h(x)=\frac{-x^2+x+6}{x-1}$
- 2. Déterminer le signe de h(x).
- 3. En déduire la position relative de C_f et C_g .