Devoir $n^{0}5$ - Suites - 1Spe maths

1 mars 2024 - 1h

Exercice 1 (5 pts) : Dans chaque cas, déterminer le sens de variation de la suite définie par :

- 1. $u_n = \frac{3n-2}{n+1}$ pour tout $n \in \mathbb{N}$.
- 2. $v_n = n^2 3n + 12$ pour tout $n \in \mathbb{N}$.

Exercice 2 (4 pts):

- 1. (u_n) est une suite arithmétique de premier terme u_1 et de raison r telle que $u_{12} = 25$ et $u_{20} = 49$. Exprimer u_n en fonction de n puis calculer $u_1 + u_2 + \dots + u_{30}$.
- 2. Calculer la somme $S = 4 + 2 + 1 + \frac{1}{2} + ... + \frac{1}{32768}$ en justifiant.

Exercice 3 (9 pts) : Un youtubeur compte 75 abonnés le 1er janvier 2019. Il remarque que chaque mois, il en conserve 60 % et 100 nouvelles personnes le suivent. On souhaite déterminer l'évolution de son nombre d'abonnés.

- 1. Montrer que le nombre d'abonnés au 1er février 2019 est 145.
- 2. On modélise la situation par une suite (u_n) , où u_n est le nombre d'abonnés n mois après janvier 2019.
 - a) Donner u_0 et u_1 , puis montrer que $u_2 = 187$.
 - b) Justifier que pour tout entier $n \in \mathbb{N}$, $u_{n+1} = 0$, $6u_n + 100$.
- 3. La suite (u_n) est-elle aritmétique? géométrique?
- 4. On définit pour tout entier $n \in \mathbb{N}$, la suite (v_n) , par $v_n = u_n 250$.
 - a) Montrer que la suite (v_n) est une suite géométrique dont on précisera le 1er terme.
 - b) En déduire v_n , puis u_n en fonction de n.
- 5. Déterminer le sens de variation de la suite (u_n) .
- 6. Quelle semble être la limite de la suite (u_n) ? Interpréter dans le contexte de l'exercice.
- 7. Compléter l'algorithme suivant pour qu'il calcule et affiche dans combien de mois le nombre d'abonnés sera supérieur à 230.

1	n=0
2	u=75
3	while:
4	u=
5	n=n+1
6	return

8. A l'aide de la calculatrice, déterminer dans combien de mois le nombre d'abonnés sera supérieur à 230.

Exercice 4 (2 pts) : On considère la fonction f définie sur l'intervalle $[0; +\infty[$ par

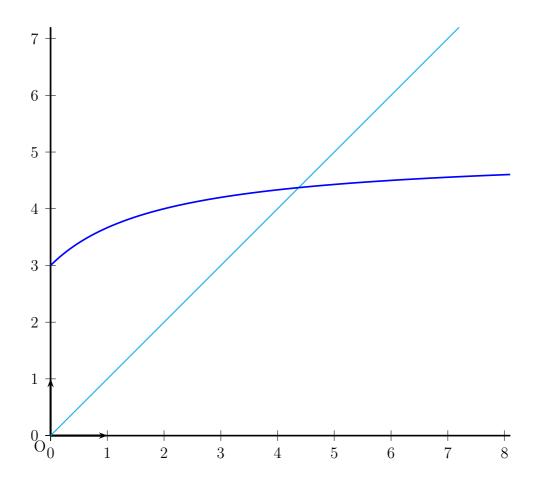
$$f(x) = 5 - \frac{4}{x+2}.$$

On admettra que f est dérivable sur l'intervalle $[0; +\infty[$.

On a tracé dans un repère orthonormé la courbe \mathcal{C} représentative de f ainsi que la droite \mathcal{D} d'équation y=x.

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

Sur la figure, en utilisant la courbe C et la droite D, placer les points M_0 , M_1 et M_2 d'ordonnée nulle et d'abscisses respectives u_0 , u_1 et u_2 .



Quelles conjectures peut-on faire sur le sens de variation et la convergence de la suite (u_n) ?