Concertion du Test nit- Sope

$$EX3:1)$$
 $u_m=(-7)^m$ on reconnait $u_m=u_0\times q^n$
are $u_0=1$ et $q=-7$ suite géométrique

2)
$$|N_1| = 2048$$
 (N_m) $|N_m| = 21 N_m (N \in N^m)$ géométrique de raison $\frac{1}{2}$ on reconnait $N_m = 9 \times N_m$ de les terme $N_1 = 2048$

3)
$$\omega_m = 5m + 2^m \quad (m \in M)$$

$$\omega_0 = 2^0 = 1 \qquad \qquad \omega_1 = 7 \qquad + \qquad \omega_2 = 2$$

$$\omega_1 = 5 + 2 = 7 \qquad \qquad \omega_n = 7 \qquad \text{with}$$

$$\omega_2 = 40 + 4 = 14 \qquad (\omega_m) \quad m' \text{ for } pos \text{ time suith}$$

$$\omega_2 = 40 + 4 = 14 \qquad (\omega_m) \quad m' \text{ for } pos \text{ time suith}$$

$$E \times 4$$
: J $S = 1 + 3 + 5 + ... + 3^{11} = \frac{J - 3^{12}}{J - 3} = \frac{J}{2} (3^2 - 1)$

$$(3) S = 265 720$$

2)
$$S = 3 - 6 + 12 - 24 + \cdots -384$$
 $-384 = 3 \times (-2)^m$
 $\times (-2) \times (-2)$ $= 1 - (-2)^n = 1 - 256 = [-255]$

Test nº7 - Suites géométriques - 1Spe maths

7 février 2024 - 30 min

Exercice 1 (1 pt) : Soit (u_n) une suite géométrique de raison 3 et de premier terme $u_0 = -2$. Exprimer u_n en fonction de n, puis calculer u_{10} .

Exercice 2 (1,5 pts) : Soit (u_n) une suite géométrique telle que $u_3 = 2$ et $u_6 = 128$. Déterminer la valeur de la raison de la suite et son premier terme u_0 .

Exercice 3 (3 pts) : Les suites suivantes sont-elles géométriques? Justifier.

- 1. (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = (-7)^n$.
- 2. (v_n) définie par $v_1 = 2048$ et, pour tout $n \in \mathbb{N}^*$, $v_{n+1} = \frac{-1}{2}v_n$.
- 3. (w_n) définie pour tout $n \in \mathbb{N}$ par $w_n = 5n + 2^n$.

Exercice 4 (2,5 pts):

- 1. Calculer $S = 1 + 3 + 9 + 27 + ... + 3^{11}$.
- 2. Calculer S = 3 6 + 12 24 + ... + 192 384.

Exercice 5 (2,5 pts) : Deux amis partent pour une randonnée de 200 km.

Le premier jour, ils marchent 20 km.

En raison de la fatigue, la distance parcourue diminue de 5% par jour.

Pour $n \in \mathbb{N}^*$, on note d_n , la distance parcourue durant le jour n.

- 1. Déterminer d_1 et d_2 ; exprimer d_{n+1} en fonction de d_n pour tout $n \in \mathbb{N}^*$.
- 2. En déduire l'expression de d_n en fonction de n, pour tout $n \in \mathbb{N}^*$.
- 3. Compléter l'algorithme suivant pour qu'il calcule et affiche dans combien de jours les deux amis termineront la randonnée.

1	n=1	
2	S=20	
3	while S <. 200	
4	n=n+1	W-3
5	S= .5. + 20 x	e 32
6	return . M	•

4. A l'aide de la calculatrice, déterminer en combien de jours ils termineront la randonnée.