Devoir de Mathématiques Nº 4 (1H15)

Exercice 1 (2,5 pts):

Déterminer les couples d'entiers relatifs (x; y) solutions de l'équation : $x^2 - 2xy - 7 = 0$

Exercice 2 (3 pts) : Soit $A_n = 4^{2n+3} + 1$, $n \in \mathbb{N}$.

Montrer par récurrence que pour tout $n \in \mathbb{N}$, A_n est divisible par 5.

Exercice 3 (3 pts):

- 1. Ecrire la liste des nombres premiers inférieurs à 50.
- 2. Le nombre 1 517 est-il premier? (justifier soigneusement la démarche)
- 3. Quels sont les entiers naturels a et b vérifiant $a^2 = b^2 + 1$ 517?

Exercice 4 (11,5 pts) : Pour tout entier naturel n non nul, on appelle S(n) le nombre égal à la somme des diviseurs positifs de n.

- 1. a) Vérifier que S(6) = 12.
 - b) Calculer S(7) et S(45).
- 2. Compléter l'algorithme ci-dessous afin qu'il calcule et affiche S(n) pour un entier n donné.

- 3. a) Justifier que, pour tout entier naturel n supérieur ou égal à 2, $S(n) \ge 1 + n$.
 - b) Quels sont les entiers naturels n tels que S(n) = 1 + n?
- 4. On suppose dans cette question que n s'écrit $p \times q$, avec p, q des nombres premiers distincts. Démontrer que S(n) = (1+p)(1+q).
- 5. On suppose dans cette question que l'entier n s'écrit p^k , où p est un nombre premier et k un nombre entier naturel non nul.
 - a) Quels sont les diviseurs de n?
 - b) En déduire que $S(n) = \frac{1 p^{k+1}}{1 p}$.
- 6. On considère la proposition suivante :
 - « Pour tous entiers naturels n et m non nuls distincts, $S(n \times m) = S(n) \times S(m)$ ». Cette proposition est-elle vraie ou fausse? Justifier.

Exercice 5 (Bonus) :

Montrer que, si les nombres p et 8p-1 sont premiers, alors 8p+1 est composé. On pourra raisonner avec le reste de la division euclidienne de p par 3.