$T^{ale}S$ spé 20 avril 2018

Devoir de Mathématiques Nº 10 (45min...)

Exercice 1 (10 pts):

Les parties A et B sont indépendantes

Partie A

Une association gère des activités pour des enfants. Elle propose deux programmes d'activités,

le programme A : cirque - éveil musical, et le programme B : théâtre - arts plastiques.

À sa création en 2014, l'association compte 150 enfants qui suivent tous le programme A.

Pour chacune des années suivantes, le nombre d'enfants inscrits dans l'association reste égal à 150.

On dispose également des informations suivantes :

Chaque enfant ne peut suivre qu'un seul programme : soit le programme A, soit le programme B.

D'une année à l'autre, 20% des inscrits au programme A choisissent à nouveau le programme A, alors que 40% choisissent le programme B. Les autres quittent l'association.

D'une année à l'autre, 60% des inscrits au programme B choisissent à nouveau le programme B et les autres quittent l'association.

Les nouveaux inscrits, qui compensent les départs, suivent obligatoirement le programme A.

On modélise le nombre d'inscrits au programme A et le nombre d'inscrits au programme B durant l'année 2014 + n respectivement par deux suites (a_n) et (b_n) et on note U_n la matrice ligne $\begin{pmatrix} a_n & b_n \end{pmatrix}$. On a donc $U_0 = \begin{pmatrix} 150 & 0 \end{pmatrix}$.

- 1. Montrer que, pour tout entier naturel n, on a $U_{n+1} = U_n M$ où $M = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix}$.
- 2. Montrer que, pour tout entier naturel n, $U_n = (75 + 75 \times 0.2^n \quad 75 75 \times 0.2^n)$.
- 3. En déduire la répartition des effectifs à long terme entre les deux programmes.

Partie B

L'association affecte à chaque enfant un numéro à 6 chiffres $c_1c_2c_3c_4c_5k$. Les deux premiers chiffres représentent l'année de naissance de l'enfant, les trois suivants sont attribués à l'enfant au moment de sa première inscription. Le dernier chiffre, appelé clé de contrôle, est calculé automatiquement de la façon suivante :

- on effectue la somme $S = c_1 + c_3 + c_5 + a \times (c_2 + c_4)$ où a est un entier compris entre 1 et 9;
- $\bullet \,\,$ on effectue la division euclidienne de S par 10, le reste obtenu est la clé k.

Lorsqu'un employé saisit le numéro à 6 chiffres d'un enfant, on peut détecter une erreur de saisie lorsque le sixième chiffre n'est pas égal à la clé de contrôle calculée à partir des cinq premiers chiffres.

- 1. Dans cette question seulement, on choisit a = 3.
 - a) Le numéro 111383 peut-il être celui d'un enfant inscrit à l'association?
 - b) L'employé, confondant un frère et une sœur, échange leurs années de naissance : 2008 et 2011. Ainsi, le numéro $08c_3c_4c_5k$ est transformé en $11c_3c_4c_5k$. Cette erreur est-elle détectée grâce à la clé?
- 2. On note $c_1c_2c_3c_4c_5k$ le numéro d'un enfant. On cherche les valeurs de l'entier a pour lesquelles la clé détecte systématiquement la faute de frappe lorsque les chiffres c_3 et c_4 sont intervertis.
 - On suppose donc que les chiffres c_3 et c_4 sont distincts.
 - a) Montrer que la clé ne détecte pas l'erreur d'interversion des chiffres c_3 et c_4 si et seulement si $(a-1)(c_4-c_3)$ est congru à 0 modulo 10.
 - b) Déterminer les entiers n compris entre 0 et 9 pour lesquels il existe un entier p compris entre 1 et 9 tel que $np \equiv 0 \pmod{10}$.
 - c) En déduire les valeurs de l'entier a qui permettent, grâce à la clé, de détecter systématiquement l'interversion des chiffres c_3 et c_4 .