Devoir de Mathématiques Nº 4 (1H)

Exercice 1 (20 pts): Les entiers naturels 1, 11, 111, 1111, ... sont des rep-units.

On appelle ainsi les entiers naturels ne s'écrivant qu'avec des 1.

Pour tout entier naturel p non nul, on note N_p le rep-unit s'écrivant avec p fois le chiffre 1 :

$$N_p = \underbrace{11\dots1}_{p \text{ répétitions}} = \sum_{k=0}^{k=p-1} 10^k.$$

Dans tout l'exercice, p désigne un entier naturel non nul.

L'objet de cet exercice est d'étudier quelques propriétés des rep-units.

Partie A : divisibilité des rep-units dans quelques cas particuliers

- 1. Justifier que N_p n'est divisible ni par 2 ni par 5.
- 2. Dans cette question, on étudie la divisibilité de N_p par 3.
 - a) Prouver que, pour tout entier naturel j, $10^j \equiv 1 \mod 3$.
 - b) En déduire que $N_p \equiv p \mod 3$.
 - c) Déterminer une condition nécessaire et suffisante pour que N_p soit divisible par 3.
- 3. Dans cette question, on étudie la divisibilité de N_p par 7.
 - a) Compléter le tableau de congruences ci-dessous, où a est l'unique entier relatif appartenant à $\{-3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3\}$ tel que $10^m \equiv a \mod 7$.

m	0	1	2	3	4	5	6
a							

b) Soit p un entier naturel non nul.

Montrer que $10^p \equiv 1 \mod 7$ si et seulement si p est un multiple de 6.

On pourra utiliser la division euclidienne de p par 6.

- c) Justifier que, pour tout entier naturel p non nul, $N_p = \frac{10^p 1}{\Omega}$.
- d) Montrer que si « 7 divise N_p » alors « 7 divise $9N_p$ ». On admet la réciproque : si « 7 divise $9N_p$ » alors « 7 divise N_p ».
- e) En déduire que N_p est divisible par 7 si et seulement si p est un multiple de 6.

Partie B: un rep-unit strictement supérieur à 1 n'est jamais un carré parfait

1. Soit n un entier naturel supérieur ou égal à 2.

On suppose que l'écriture décimale de n^2 se termine par le chiffre 1, c'est-à-dire $n^2 \equiv 1 \mod 10$.

a) Compléter le tableau de congruences ci-dessous.

$n \equiv \dots$ [[10]	0	1	2	3	4	5	6	7	8	9
$n^2 \equiv \dots$	[10]										

- b) En déduire qu'il existe un entier naturel m tel que : n = 10m + 1 ou n = 10m 1.
- c) Conclure que $n^2 \equiv 1 \mod 20$.
- 2. Soit p un entier naturel supérieur ou égal à 2.

Quel est le reste de la division euclidienne de N_p par 20?

3. En déduire que, pour p entier naturel supérieur ou égal à 2, N_p n'est pas le carré d'un entier.

Exercice 2 (Bonus) : Soit N un entier naturel, impair non premier. On suppose que $N=a^2-b^2$ où a et b sont deux entiers naturels.

- 1. Montrer que a et b n'ont pas la même parité.
- 2. Montrer que N peut s'écrire comme produit de deux entiers naturels p et q.
- 3. Quelle est la parité de p et de q?