Devoir de Mathématiques N^o 7 (1/2h)

Exercice 1 (10 pts) : Soit la suite (u_n) définie par

 $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 3u_n + 1$

On admet que, pour tout entier naturel n, u_n est entier.

- 1. Démontrer que les termes de la suite (u_n) sont alternativement pairs et impairs.
- 2. On admet que, pour tout entier naturel n, $2u_n = 3^n 1$.
 - a) Déterminer le plus petit entier naturel non nul n tel que 3^n est congru à 1 modulo 7.
 - b) En déduire que $u_{2\,022}$ est divisible par 7.
- 3. a) Sans justification, compléter le tableau suivant :

Reste de la division euclidienne de m par 5	0	1	2	3	4
Reste de la division euclidienne de $3m + 1$ par 5					

- b) En déduire que, pour tout entier naturel n, si u_n est congru à 4 modulo 5, alors u_{n+4} est congru à 4 modulo 5.
- c) Existe-t-il $n \in \mathbb{N}$ tel que le reste de la division euclidienne de u_n par 5 soit égal à 2?

Bonus:

- 1. L'affirmation suivante est-elle vraie? Justifier. Affirmation : « Si p est un nombre premier impair, alors u_p est premier. »
- 2. Montrer par récurrence, que pour tout entier naturel $n, 2u_n = 3^n 1$
- 3. Calculer le reste de la division euclidienne par 5 de chacun des cinq premiers termes de la suite (u_n)