Devoir de mathématiques n^o 11 - TES

28 avril 2009 - 1H

Sur un parcours donné, la consommation y d'une voiture est donnée en fonction de sa vitesse moyenne x par le tableau suivant :

x (en km/heure)	80	90	100	110	120
y (en litres/100km)	4	4,8	6, 3	8	10

- 1. La consommation est-elle proportionnelle à la vitesse moyenne?
- 2. (a) Représenter le nuage de points associé à la série statistique $(x_i; y_i)$ dans un repère orthogonal où 2 cm représentent 10 km/h sur l'axe des abscisses, et 1 cm représente 1 litre sur l'axe des ordonnées.
 - (b) Déterminer les coordonnées du point moyen G du nuage et le placer sur le graphique.
 - (c) A l'aide de la calculatrice, donner une équation de la droite d'ajustement affine D, de y en x, obtenue par la méthode des moindres carrés, sous la forme y = ax + b (a sera arrondi au millième et b au centième). Tracer cette droite D sur le graphique précédent.
 - (d) En utilisant cet ajustement, estimer la consommation aux 100km (arrondie au dixième) de la voiture pour une vitesse de $130 \, km/h$.
- 3. La forme du nuage permet d'envisager un ajustement exponentiel : on pose $z = \ln y$.
 - (a) Compléter le tableau suivant (arrondir au centième)

x (en km/heure)	80	90	100	110	120
y (en litres/100km)	4	4,8	6, 3	8	10
$z = \ln y$					

- (b) A l'aide de la calculatrice, donner une équation de la droite d'ajustement affine \triangle , de z en x, obtenue par la méthode des moindres carrés, sous la forme z = ax + b (a et b arrondis à 10^{-4}).
- (c) Exprimer y sous la forme $y=Ae^{Bx}$ (donner A et B arrondis à 10^{-4}).
- (d) Soit g la fonction définie par $g(x) = 0,6018e^{0,0234x}$. En vous aidant de la calculatrice, tracer avec soin (tableau de valeurs) la courbe représentative C_g de la fonction g sur le graphique précédent, pour x compris entre 80 et 120.
- (e) En utilisant cet ajustement, estimer la consommation aux 100km (arrondie au dixième) de la voiture pour une vitesse de $130 \, km/h$.
- 4. Calculer la somme des résidus pour chaque ajustement et conclure.