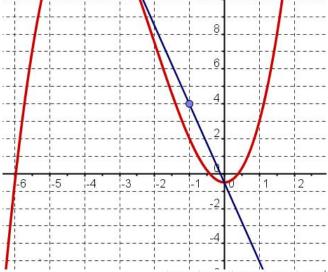
Exercice 1

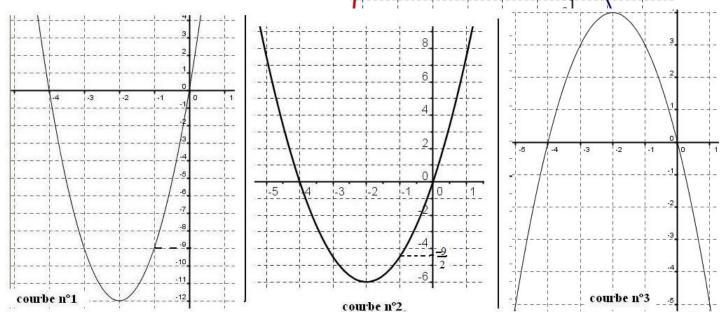
(6 points)

f est une fonction définie et dérivable sur $\mathbb R$ dont la représentation graphique C_f est donnée par la courbe

La droite T est la tangente à la courbe C_f au point A d'abscisse -3

- Déterminer graphiquement f'(-3) en justifiant la réponse.
- 2. Déterminer laquelle des trois courbes ci-dessous correspond à la représentation graphique de la fonction dérivée f' de f en justifiant la réponse.
- 3. En déduire graphiquement f'(-1). Donner l'équation réduite la tangente T à C_f au point d'abscisse -1 de puis la tracer dans le repère ci-contre.





(6 points) Exercice 2

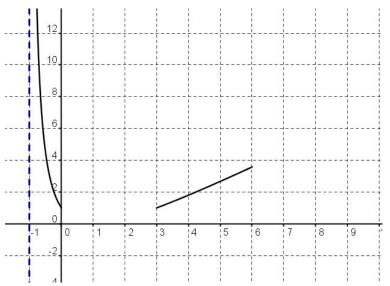
La fonction f est définie sur $]-1;+\infty[$ et on note C_f sa représentation graphique. L'axe des abscisses est la tangente à C_f au point d'abscisse 1.

- 1. Justifier que f(1) = 0 et f'(1) = 0.
- La fonction f est de la forme $f(x)=\frac{ax^2+bx+1}{x+1}$ où a et b sont deux réels. a) Montrer que $f'(x)=\frac{ax^2+2ax+b-1}{(x+1)^2}$

 - b) En déduire les valeurs de a et b
- Pour la suite, on suppose a=1 et b=-2
 - a) Déterminer $\lim_{x \to -1^+} f(x)$.

Interpréter ce résultat graphiquement.

- b) Montrer que pour tout réel x de D_f , $f(x) = x 3 + \frac{4}{x+1}$
- c) En déduire que C_f admet une asymptote oblique en $+\infty$ dont on précisera l'équation.
- d) Etudier les variations de f
- e) Terminer le tracé de la courbe C_f dans le repère ci-dessous en plaçant les éléments caractéristiques obtenus aux questions



Exercice 3

(8 points)

Partie A

On considère la fonction g définie par $g(x) = \frac{2}{3}x^3 - 4x^2 - 4$ définie sur $[0; +\infty[$

- Déterminer $\lim_{x \to +\infty} g(x)$ 1.
- 2. Calculer g'(x) puis dresser le tableau de variations de g'(x)
- Montrer que l'équation g(x) = 0 admet une solution unique α sur $[4; +\infty[$ 3.
- Donner la valeur arrondie de α à l'unité près. 4.
- En déduire le signe de g(x) sur $[0; +\infty[$

Partie B

On considère la fonction f définie par $f(x) = \frac{\frac{1}{3}x^3 - 4x^2 + 21x + 4}{x}$ définie sur $]0; +\infty[$ et on note C_f sa courbe représentative dans un repère orthogonal.

- Déterminer $\lim_{x\to 0^+} f(x)$ Interpréter graphiquement le résultat.
- Déterminer $\lim_{x \to +\infty} f(x)$ **2**.
- Montrer que $f'(x) = \frac{g(x)}{x^2}$ et en déduire le tableau de variation de f3.

Partie C

Si C(q) est le coût total de fabrication de q objets, on rappelle que :

- Le coût moyen unitaire de fabrication noté $C_M(q)$ lorsque l'on produit q objets est donné par : $C_M(q) = \frac{C(q)}{q}$
- Le coût marginal $C_m(q)$ (coût supplémentaire engendré par la fabrication d'un objet supplémentaire lorsque l'on produit q objets) est : $C_m(q) = C'(q)$

Dans un atelier, on fabrique chaque jour une quantité q d'objets et le coût de fabrication, en centaines d'euros, de ces q objets est donné par $C(q) = \frac{1}{3}q^3 - 4q^2 + 21q + 4$.

Les contraintes de production de l'atelier ne permettent pas de produire plus de 25 objets par jour.

Exprimer la fonction coût moyen $C_M(q)$ en fonction de q

- 2. Déterminer la quantité d'objets à produire pour que le coût moyen unitaire de production soit minimum. Donner alors ce coût moyen unitaire à un euro près.
- **3.** Exprimer le coût marginal $C_m(q)$ en fonction de q.
- **4.** Donner les variations de $C_m(q)$ sur [0; 25].
- 5. Après avoir identifié laquelle de chacune des courbes ci-dessous correspond à C, C_M et C_m , déterminer la relation entre le coût moyen et le coût marginal lorsque $C_M(q)$ est minimum?

