Devoir n°4 - Primitives - Fonction ln - TS

25 novembre 2014 - 1h

Exercice 1 (5,5 pts):

Déterminer les primitives des fonctions suivantes, sur un intervalle que l'on précisera où celles-ci sont continues.

1.
$$f(x) = x^3 + 2 + \frac{1}{x^3}$$

3.
$$h(x) = \frac{3}{\sqrt{2x-1}}$$

$$4. \ i(x) = \frac{\sin x}{(\cos x)^2}$$

2.
$$g(x) = x^3(x^4 - 1)^2$$

5.
$$j(x) = \frac{7}{3x+1}$$

Exercice 2 (3,5 pts) : Résoudre dans $\mathbb R$ l'équation suivante :

$$(\ln x)^2 - 2\ln x - 3 = 0$$

Exercice 3 (11 pts):

Partie A : Etude d'une fonction auxiliaire g définie sur $[2; +\infty[$ par

$$g(x) = x - 2 - 2\ln(x)$$

- 1. Dresser le tableau de variations de la fonction g. (on rappelle que $\lim_{x\to+\infty}\frac{\ln x}{x}=0$)
- 2. Montrer que l'équation g(x) = 0 admet une seule solution α sur $[2; +\infty[$; donner un encadrement de α à 10^{-2} .
- 3. En déduire le signe de la fonction g sur $[2; +\infty[$.

Partie B : Etude de la fonction f définie sur $]2; +\infty[$ par

$$f(x) = \frac{x \ln x}{x - 2}$$

Dans le plan est rapporté à un repère orthogonal, $\mathscr C$ désigne la courbe représentative de la fonction f.

- 1. a) Déterminer la limite de f en 2 et interpréter graphiquement.
 - b) Ecrire f(x) sous la forme $\frac{x}{x-2} \times \ln x$ et déterminer la limite de f en $+\infty$.
- 2. Montrer que la dérivée f' a le même signe que g sur $]2; +\infty[$, puis dresser le tableau de variations de f.
- 3. Montrer que $f(\alpha) = \frac{\alpha}{2}$; en déduire un encadrement de $f(\alpha)$.