Devoir nº6 - Probabilités - TS

27 janvier 2015 - 1h

Exercice 1 (11 pts):

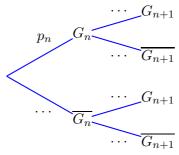
Max joue n parties successives sur sa console de jeu.

On admet que la probabilité qu'il gagne la première partie est 0,1, et que :

- s'il gagne une partie, la probabilité qu'il gagne la suivante est 0,8;
- s'il perd une partie, la probabilité qu'il gagne la suivante est 0,6.

Pour tout entier naturel $n \ge 1$, on note G_n l'évènement « Max gagne la n-ième partie » et on pose $p_n = p(G_n)$.

- 1. a) Construire un arbre pondéré pour les deux premières parties.
 - b) Calculer p_2 .
- 2. a) Recopier sur la copie et compléter l'arbre de probabilité donné ci-dessous



b) Montrer que, pour tout entier naturel $n \geq 1$,

$$p_{n+1} = 0.2p_n + 0.6$$

c) Montrer que la suite (u_n) définie pour tout entier naturel $n \geq 1$ par

$$u_n = p_n - 0.75$$

est une suite géométrique dont on donnera le premier terme et la raison.

- d) En déduire l'expression de u_n puis de p_n en fonction de n.
- e) Montrer la suite (p_n) est croissante.
- f) Déterminer la limite de la suite (p_n) .
- 3. Max peut-il espérer, en jouant suffisamment longtemps, avoir trois chances sur quatre de gagner la partie?

Exercice 2 (9 pts):

Dans cet exercice, les résultats seront approchés à 0,000 1 près.

Lors d'une épidémie chez des bovins, on s'est aperçu que si la maladie est diagnostiquée suffisamment tôt chez un animal, on peut le guérir; sinon la maladie est mortelle.

Un test est mis au point et essayé sur un échantillon d'animaux dont 1% est porteur de la maladie.

On obtient les résultats suivants :

- si un animal est porteur de la maladie, le test est positif dans 85% des cas;
- si un animal est sain, le test est négatif dans 95% des cas.

On choisit de prendre ces fréquences observées comme probabilités pour la population entière et d'utiliser le test pour un dépistage préventif de la maladie.

On note les évènements :

- M: « L'animal est porteur de maladie »;
- T: « Le test est positif ».
- 1. Construire un arbre pondéré modélisant la situation proposée.
- 2. On choisit un animal au hasard.
 - a) Décrire l'évènement $M \cap T$ et calculer sa probabilité.
 - b) Montrer que la probabilité pour que le test soit positif est 0,058.
- 3. Un animal est choisi au hasard parmi ceux dont le test est positif. Quelle est la probabilité qu'il soit porteur de la maladie?
- 4. On choisit cinq animaux au hasard. La taille de ce troupeau permet de considérer les épreuves comme indépendantes et d'assimiler les tirages à des tirages avec remise. On note X la variable aléatoire qui, aux cinq animaux choisis, associe le nombre d'animaux ayant un test positif.
 - a) Quelle est la loi de probabilité suivie par X?
 - b) Quelle est la probabilité pour que deux animaux exactement aient un test positif?
 - c) Quelle est la probabilité pour qu'au moins un des cinq animaux ait un test positif?
- 5. Le coût des soins à prodiguer à un animal ayant réagi positivement au test est de 100 €, et le coût d'abattage d'un animal est de 1 000 €. On suppose que le test est gratuit.

D'après les données précédentes, la loi de probabilité du coût à engager pour un animal subissant le test est donné par le tableau suivant :

Coût (en €)	0	100	1 000
probabilité	0,940 5	0,058	0,001 5

- a) Calculer l'espérance mathématique de la variable aléatoire associant le coût à engager.
- b) Un éleveur possède un troupeau de 20 bêtes.

Si tout le troupeau est soumis au test, quelle somme doit-il prévoir d'engager?