Devoir nº8 - Suites - TS

17 mars 2015 - 1h

Exercice 1 (14 points) : On considère la suite (u_n) définie sur \mathbb{N} par :

$$\begin{cases} u_0 &= 1 \\ u_{n+1} &= \frac{1}{2}u_n + n - 1 \end{cases}$$

- 1. a) Montrer par récurrence que pour tout entier supérieur ou égal à 3, $u_n \ge 0$.
 - b) En déduire que pour tout entier supérieur ou égal à 4, $u_n \ge n-2$.
 - c) En déduire la limite de la suite (u_n) .
- 2. Compléter l'algorithme suivant, pour qu'il affiche le plus petit entier n tel que $u_n \ge 10^9$:

Variables
n est un entier naturel
u est un réel
Traitement
n prend la valeur
<i>u</i>
Tant que faire
<i>u</i>
n
Fintantque
Sortie
Afficher n

Est-on sûr que l'algorithme va s'arrêter?

3. On définit la suite (v_n) sur \mathbb{N} par :

$$v_n = 4u_n - 8n + 24$$

- a) Démontrer que la suite (v_n) est une suite géométrique.
- b) Montrer que pour tout entier naturel n:

$$u_n = \frac{7}{2^n} + 2n - 6$$

- c) En utilisant cette expression, retrouver la limite de (u_n) .
- 4. Soit $S_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + \dots + u_n$ pour $n \in \mathbb{N}$.
 - a) Vérifier que pour tout entier naturel n, $u_n = x_n + y_n$, où (x_n) est une suite géométrique et (y_n) est suite arithmétique, dont on précisera pour chacune, le premier terme et la raison.
 - b) En déduire l'expression de (S_n) en fonction de n entier naturel.

Exercice 2 (6 points) : Soit f la fonction définie sur l'intervalle]-1; $+\infty[$ par :

$$f(x) = 3 - \frac{4}{x+1}.$$

On considère la suite définie pour tout $n \in \mathbb{N}$ par :

$$\begin{cases} u_0 &= 4 \\ u_{n+1} &= f(u_n) \end{cases}$$

- 1. On a tracé ci-dessous, la courbe $\mathcal C$ représentative de la fonction f sur l'intervalle $[0 ; +\infty[$ et la droite $\mathcal D$ d'équation y=x.
 - a) Sur le graphique, placer sur l'axe des abscisses, u_0, u_1, u_2 et u_3 . Faire apparaître les traits de construction.
 - b) Que peut-on conjecturer sur le sens de variation et la convergence de la suite (u_n) ?
- 2. Dans cette question, nous allons démontrer les conjectures formulées à la question 1. b.
 - a) Démontrer par un raisonnement par récurrence que $u_n \ge 1$ pour tout $n \in \mathbb{N}$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, on a : $u_{n+1} \leq u_n$.
 - c) Déduire des questions précédentes que la suite (u_n) est convergente.
 - d) Question bonus : déterminer la limite de la suite (u_n) .

4

3

2

1

-1