Devoir n°9 - Calcul intégral - TS

21 avril 2015 - 1h

Exercice 1 (6 points) : Calculer la valeur exacte des intégrales suivantes :

$$I = \int_{1}^{6} \frac{1}{(x-3)^3} \, dx$$

$$J = \int_{-1}^{2} \frac{1}{3x + 5} \, dx$$

$$K = \int_{-1}^{1} x e^{3x^2 - 1} \, dx$$

Exercice 2 (14 points) : Soit n un entier naturel supérieur ou égal à 1. On note f_n la fonction définie pour tout réel x de l'intervalle [0; 1] par

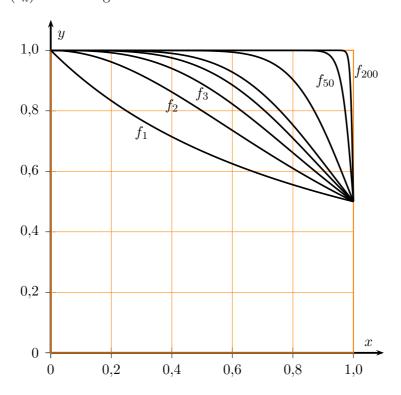
$$f_n(x) = \frac{1}{1 + x^n}$$

Pour tout entier $n \ge 1$, on définit le nombre I_n par

$$I_n = \int_0^1 f_n(x) dx = \int_0^1 \frac{1}{1 + x^n} dx$$

Les représentations graphiques de certaines fonctions f_n obtenues à l'aide d'un logiciel sont tracées ci-après.

- 1. a) En expliquant votre démarche, conjecturer le sens de variation de la suite (I_n) .
 - b) Démontrer cette conjecture.
- 2. Calculer la valeur exacte de I_1 .
- 3. a) Démontrer que, pour tout réel $x \in [0; 1]$ et pour tout entier naturel $n \ge 1$, on a : $\frac{1}{1+x^n} \le 1$
 - b) En déduire que, pour tout entier naturel $n \ge 1$, on a : $I_n \le 1$.
- 4. Démontrer que, pour tout réel $x \in [0; 1]$ et pour tout entier naturel $n \ge 1$, on a : $1 x^n \le \frac{1}{1 + x^n}$.
- 5. Calculer l'intégrale $\int_0^1 (1-x^n) dx$.
- 6. À l'aide des questions précédentes, encadrer I_n pour tout entier naturel $n \ge 1$, démontrer que la suite (I_n) est convergente et déterminer sa limite.



Exercice 3 (bonus) : On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_0^1 \frac{e^{-nx}}{1 + e^{-x}} \, dx.$$

- 1. a) Montrer $u_0 + u_1 = 1$.
 - b) Montrer que $u_1 = 1 \ln(2/(1+e))$ et en déduire u_0 .
- 2. a) Montrer que pour tout entier naturel $n, u_n \geq 0$.
 - b) Montrer pour tout entier naturel n non nul, $u_n + u_{n+1} = \frac{1 e^{-n}}{n}$. c) En déduire que pour tout entier naturel n, $u_n \leq \frac{1 e^{-n}}{n}$.
- 3. Prouver que (u_n) converge vers une limite à déterminer.