Devoir nº10 - Intégration - TS

16 mars 2016 - 1h

Exercice 1 (2,5 pts) : Déterminer toutes les primitives des fonctions suivantes :

$$f(x) = \frac{x^2}{1+x^3} \text{ sur } [0; +\infty[$$

$$g(x) = \frac{x}{\sqrt{3x^2+2}} \text{ sur } \mathbb{R}$$

Exercice 2 (4 pts) : Calculer la valeur exacte des intégrales suivantes :

$$I = \int_0^1 \frac{1}{(2x+1)^2} \, dx \qquad \qquad J = \int_0^{\frac{\pi}{3}} \frac{\sin x}{(\cos x)^3} \, dx$$

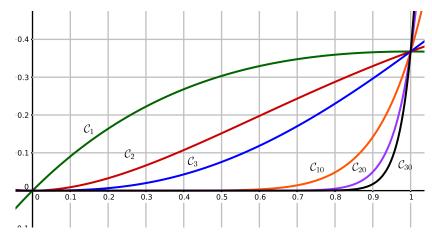
Exercice 3 (13,5 pts) : Pour tout entier naturel n non nul, on note C_n la représentation graphique de la fonction f_n , définie sur [0;1] par :

$$f_n(x) = x^n e^{-x}$$

On désigne par (I_n) la suite définie pour tout entier naturel n non nul par :

$$I_n = \int_0^1 f_n(x) \, dx$$

- 1. Soit F la fonction définie sur \mathbb{R} par $F(x) = (ax + b)e^{-x}$, avec a et $b \in \mathbb{R}$. Déterminer a et b pour que F soit une primitive de f_1 ; en déduire la valeur de I_1 .
- 2. On a tracé ci-dessous C_1 , C_2 , C_3 , C_{10} , C_{20} et C_{30} .



- a) Formuler une conjecture sur le sens de variation de la suite (I_n) en décrivant la démarche. Démontrer cette conjecture.
- b) En déduire que la suite (I_n) converge.
- c) Montrer que pour tout n non nul, $f_n(x) \leq x^n$ sur [0;1].
- d) Déterminer $\lim_{n\to+\infty} I_n$.

Exercice 4 (Bonus) : On considère la fonction f définie sur $[1; +\infty[$ par

$$f(x) = (x-1)e^{1-x}$$

Soit (C_f) la courbe représentative de la fonction f dans le repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$ ci-dessous.

1. Pour tout nombre réel x supérieur ou égal à 1, on pose :

$$F(x) = \int_{1}^{x} f(t) dt = \int_{1}^{x} (t-1)e^{1-t} dt$$

- a) Démontrer que la fonction F est croissante sur $[1 ; +\infty[$.
- b) Vérifier que $G(x) = -xe^{1-x}$ est une primitive de f sur $[1; +\infty[$; en déduire que pour tout réel $x \in [1; +\infty[$, $F(x) = 1 xe^{1-x}$.
- 2. Soit un réel a supérieur ou égal à 1. On considère la partie \mathcal{D}_a du plan limitée par la courbe (\mathcal{C}_f) , l'axe des abscisses et les droites d'équation x = 1 et x = a.
 - a) Hachurer \mathcal{D}_4 sur le graphique.
 - b) Exprimer l'aire, en unités d'aires, de \mathcal{D}_a , en fonction de a.
 - c) Déterminer $\lim_{a\to +\infty} F(a)$ et interpréter graphiquement.

