Devoir n°3 - Suites - TS

22 octobre 2015 - 2h

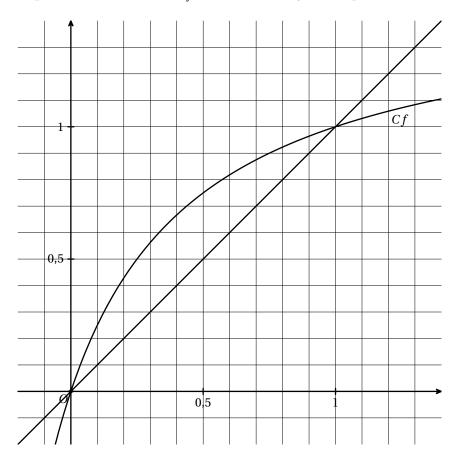
Exercice 1 (9 pts):

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n} = f(u_n)$$

où f est la fonction définie $]\frac{-1}{2}; +\infty[$ par $f(x)=\frac{3x}{1+2x}.$

Sur le graphique sont représentées la courbe C_f de la fonction f ainsi que la droite d'équation y = x.



- 1. a) Sur l'axe des abscisses, placer u_0 , puis construire u_1 , u_2 et u_3 en laissant apparents les traits de construction.
 - b) Quelles conjectures peut-on émettre sur le sens de variation et sur la convergence de la suite (u_n) .
- 2. Démontrer, par récurrence, que pour tout entier naturel $n, 0 < u_n < 1$.
- 3. a) Démontrer la variation observée de la suite (u_n) .
 - b) Justifier que la suite (u_n) converge.
- 4. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - c) En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.
 - d) Déterminer la limite de la suite (u_n) .

Exercice 2 (11 pts):

L'objet de cet exercice est l'étude de la suite (u_n) définie par son premier terme $u_1 = \frac{3}{2}$ et la relation de récurrence : $u_{n+1} = \frac{nu_n + 1}{2(n+1)}$, pour tout entier naturel $n \ge 1$.

Partie A - Algorithmique et conjectures

Pour calculer et afficher le terme u_9 de la suite, un élève propose l'algorithme ci-contre. Il a oublié de compléter deux lignes.

Variables	n est un entier naturel			
	u est un réel			
Initialisation	Affecter à n la valeur 1			
	Affecter à u la valeur 1,5			
Traitement	Tant que $n < 9$			
	Affecter à u la valeur			
	Affecter à n la valeur			
	Fin Tant que			
Sortie	Afficher la variable u			

- 1. Recopier et compléter les deux lignes de l'algorithme où figurent des points de suspension.
- 2. Comment faudrait-il modifier cet algorithme pour qu'il calcule et affiche tous les termes de la suite de u_2 jusqu'à u_9 ?
- 3. Avec cet algorithme modifié, on a obtenu les résultats suivants, arrondis au dix-millième :

n	1	2	3	4	5	6	 99	100
u_n	1,5	0,625	0,375	0,2656	$0,\!2063$	0,1693	 0,0102	0,0101

Au vu de ces résultats, conjecturer le sens de variation et la convergence de la suite (u_n) .

Partie B - Étude mathématique

On définit une suite auxiliaire (v_n) par : pour tout entier $n \ge 1$, $v_n = nu_n - 1$.

- 1. Montrer que la suite (v_n) est géométrique; préciser sa raison et son premier terme.
- 2. En déduire que, pour tout entier naturel $n \ge 1$, on a : $u_n = \frac{1 + (0.5)^n}{n}$.
- 3. Déterminer la limite de la suite (u_n) .
- 4. Justifier que, pour tout entier $n \ge 1$, on a : $u_{n+1} u_n = -\frac{1 + (1 + 0.5n)(0.5)^n}{n(n+1)}$. En déduire le sens de variation de la suite (u_n) .

Partie C - Retour à l'algorithmique

En s'inspirant de la partie A, écrire un algorithme permettant de déterminer et d'afficher le plus petit entier n tel que $u_n < 0.001$. Justifier que l'algorithme s'arrête.