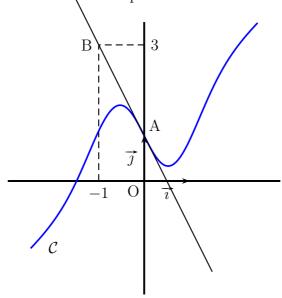
Devoir n°7 - Exponentielle - Ln - TS

14 janvier 2016 - 2h

Exercice 1 (6 pts): Sur le graphique ci-dessous, on a tracé, dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, une courbe C et la droite (AB) où A et B sont les points de coordonnées respectives (0; 1) et (-1; 3).



On désigne par f la fonction dérivable sur \mathbb{R} dont la courbe représentative est \mathcal{C} . On suppose, de plus, qu'il existe un réel a tel que pour tout réel x,

$$f(x) = x + 1 + axe^{-x^2}$$
.

- 1. a) Justifier que la courbe \mathcal{C} passe par le point A.
 - b) Déterminer le coefficient directeur de la droite (AB).
 - c) Démontrer que pour tout réel x,

$$f'(x) = 1 - a(2x^2 - 1)e^{-x^2}$$
.

- d) On suppose que la droite (AB) est tangente à la courbe \mathcal{C} au point A. Déterminer la valeur du réel a.
- 2. D'après la question précédente, pour tout réel x,

$$f(x) = x + 1 - 3xe^{-x^2}$$
 et $f'(x) = 1 + 3(2x^2 - 1)e^{-x^2}$.

- a) Déterminer la limite de f en $-\infty$.
- b) Justifier que pour tout réel $x \in]-1$; 0], f(x) > 0.
- c) Justifier que pour tout réel $x \in]-\infty;-1]$, on a f'(x)>0.
- d) Montrer alors qu'il existe un unique réel c de l'intervalle $]-\infty;-1]$ tel que f(c)=0, et en déduire que c est la seule solution de l'équation f(x)=0 sur $]-\infty;0]$.

Exercice 2 (4,5 pts) : Résoudre

$$(E_1)$$
: $\ln(x+4) + \ln(x+1) = \ln(x+9)$ (E_2) : $(\ln x)^2 + \ln x - 12 > 0$

Exercice 3 (9,5 pts) : Soit f la fonction définie sur $I =]0; +\infty[$ par

$$f(x) = \frac{\ln x}{1+x}$$

On note \mathscr{C} la courbe représentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j})$ du plan.

1. Soit g la fonction définie sur I par :

$$g(x) = 1 + x - x \ln x$$

- a) Etudier les limites de q en 0 et en $+\infty$.
- b) Etudier les variations de g et construire son tableau de variation.
- c) Démontrer que l'équation g(x) = 0 admet une unique solution α sur I. Donner un encadrement de α d'amplitude 10^{-2} .
- d) En déduire le signe de g sur I.

2. a) Restitution organisée de connaissances :

On rappelle que
$$\lim_{t\to +\infty}\frac{e^t}{t}=+\infty$$
; démontrer que $\lim_{x\to +\infty}\frac{\ln(x)}{x}=0$.
b) Etudier les limites de f en 0 et en $+\infty$, et interpréter graphiquement.

- c) Montrer que pour tout $x \in I$,

$$f'(x) = \frac{g(x)}{x(1+x)^2}$$

- d) En déduire le signe de f' et dresser le tableau de variation de f sur I.
- e) Montrer que $f(\alpha) = \frac{1}{\alpha}$.
- f) Déterminer une équation de la tangente T de $\mathscr C$ au point d'intersection de $\mathscr C$ et de l'axe de abscisses.