Devoir n°8 - Nombres Complexes - TS

15 février 2016 - 2h

Exercice 1 (1 pt):

- 1. Ecrire sous forme algébrique le nombre : $a = 2e^{-i\frac{\pi}{6}} 3e^{3i\frac{\pi}{2}}$
- 2. Déterminer la forme exponentielle du nombre : $b = -3(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))$

Exercice 2 (3 pts) : On donne les nombres complexes : $z_1 = 1 - i$ et $z_2 = \frac{\sqrt{6} - i\sqrt{2}}{2}$

- 1. Déterminer la forme exponentielle de z_1 , z_2 et $\frac{z_1}{z_2}$.
- 2. Déterminer la forme algébrique de $\frac{z_1}{z_2}$, et en déduire la valeur exacte de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$

Exercice 3 (2,5 pts) : Résoudre les équations suivantes dans l'ensemble des complexes :

$$(E_1)$$
: $i\bar{z} + 3z = 2 - 2i$

$$(E_2): 3z^2 - 2z = -1$$

Exercice 4 (4 pts):

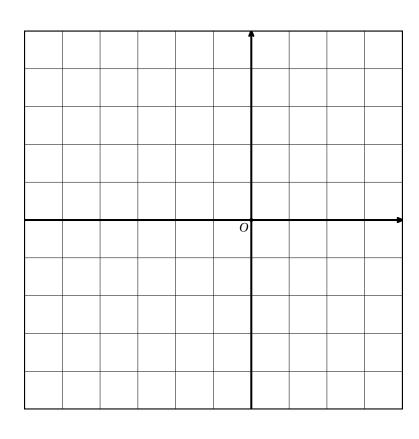
Représenter les ensembles suivants après avoir brièvement justifié :

$$\mathcal{E}_1 = \{ M(z) / |z + 3 + i| = 2 \}$$

$$\mathscr{E}_2 = \{ M(z) / |z + 2 - i| = |z - 4i| \}$$

$$\mathscr{E}_3 = \left\{ M(z) / \arg(z + 2 - i) = \frac{\pi}{6} (\pi) \right\}$$

$$\mathscr{E}_4 = \left\{ M(z) / \arg\left(\frac{z+3+\mathrm{i}}{z-1+2\mathrm{i}}\right) = \frac{\pi}{2} (2\pi) \right\}$$



Exercice 5 (4,5 pts) : Dans le plan complexe muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$. Soit la fonction f qui, à tout point M, d'affixe $z \neq 2$ i, associe le point M' d'affixe z' tel que :

$$z' = \frac{2z}{z - 2i}$$

- 1. On pose z = x + iy avec $x, y \in \mathbb{R}$ et z' = x' + iy' avec $x', y' \in \mathbb{R}$. Vérifier que $x' = \frac{2(x^2 + y^2 - 2y)}{x^2 + (y - 2)^2}$ et $y' = \frac{4x}{x^2 + (y - 2)^2}$.
- 2. Soit \mathscr{E} l'ensemble des points M(z) tels que z' soit un réel; déterminer l'ensemble \mathscr{E} .
- 3. Soit \mathscr{F} l'ensemble des points M(z) tels que z' soit un imaginaire pur ; déterminer l'ensemble \mathscr{F} .

Exercice 6 (5 pts):

Partie A: On considère l'équation $(E): z^4 = -4$, où z est un nombre complexe.

- 1. Montrer que si z est solution de (E) alors -z et \overline{z} sont aussi solutions de (E).
- 2. Soit le nombre complexe $z_0 = 1 + i$.
 - a) Ecrire z_0 sous forme exponentielle.
 - b) Vérifier que z_0 est solution de (E).
- 3. D'après les questions précédentes, en déduire trois autres solutions de l'équation (E).

Partie B: Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$. Les points A, B, C et D ont pour affixes respectives :

$$z_A = 1 + i$$
, $z_B = -1 + i$, $z_C = -1 - i$, $z_D = 1 - i$.

- 1. Soit E le point d'affixe $z_E=-1+\sqrt{3}$; montrer que le triangle BCE est équilatéral.
- 2. Soit F le point d'affixe $z_F = -\mathrm{i}(1+\sqrt{3})$; montrer que les points A, E et F sont alignés.

(on pourra vérifier que
$$\frac{z_E - z_A}{z_F - z_A}$$
 est un réel)