Devoir nº11 - Intégration - TS

24 mars 2017 - 2h

Exercice 1 (2,5 pts) : Déterminer toutes les primitives des fonctions suivantes :

$$f(x) = \frac{e^x}{(1+e^x)^3} \text{ sur } \mathbb{R}$$
 $g(x) = \frac{x}{4-x^2} \text{ sur } [-1;1]$

Exercice 2 (3,5 pts) : Calculer la valeur exacte des intégrales suivantes :

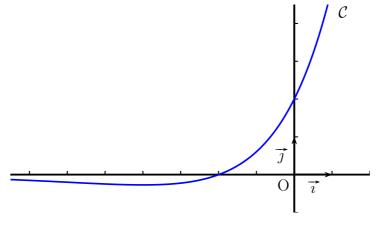
$$I = \int_{-1}^{0} \frac{x-2}{\sqrt{x^2 - 4x + 3}} dx$$

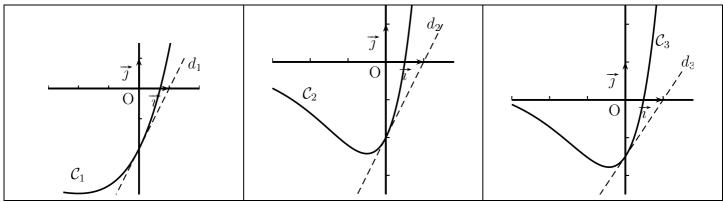
$$J = \int_{0}^{\frac{\pi}{3}} (\sin x)(\cos x)^2 dx$$

Exercice 3 (6 pts): Soit f une fonction définie et dérivable sur \mathbb{R} . On note \mathcal{C} sa courbe représentative dans le plan muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

Partie A

Sur les graphiques ci-dessous, on a représenté la courbe \mathcal{C} et trois autres courbes \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 avec la tangente en leur point d'abscisse 0.





- 1. Donner par lecture graphique, le signe de f(x) selon les valeurs de x.
- 2. On désigne par F une primitive de la fonction f sur \mathbb{R} .
 - a) À l'aide de la courbe C, déterminer F'(0) et F'(-2).
 - b) L'une des courbes C_1 , C_2 , C_3 est la courbe représentative de la fonction F. Déterminer laquelle en justifiant l'élimination des deux autres.

Partie B

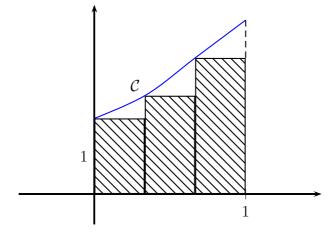
Dans cette partie, on admet que la fonction f évoquée dans la **partie** A est la fonction définie sur \mathbb{R} par

$$f(x) = (x+2)e^{\frac{1}{2}x}$$
.

- 1. L'observation de la courbe \mathcal{C} permet de conjecturer que la fonction f admet un minimum.
 - a) Démontrer que pour tout réel $x, f'(x) = \frac{1}{2}(x+4)e^{\frac{1}{2}x}$.
 - b) En déduire une validation de la conjecture précédente.
- 2. On pose $I = \int_{0}^{1} f(x) dx$.
 - a) Interpréter géométriquement le réel I.
 - b) Soient u et v les fonctions définies sur \mathbb{R} par u(x) = x et $v(x) = e^{\frac{1}{2}x}$. Vérifier que f = 2(u'v + uv').
 - c) En déduire la valeur exacte de l'intégrale I.
- 3. On donne l'algorithme ci-dessous.

On note s_n le nombre affiché par cet algorithme lorsque l'utilisateur entre un entier naturel strictement positif comme valeur de n.

a) Justifier que s_3 représente l'aire, exprimée en unités d'aire, du domaine hachuré sur le graphique ci-dessous où les trois rectangles ont la même largeur.



b) Que dire de la valeur de s_n fournie par l'algorithme proposé lorsque n devient grand?

Exercice 4 (8 pts) : Soit n un entier naturel non nul.

On considère la fonction f_n définie et dérivable sur l'ensemble \mathbb{R} par $f_n(x) = x^2 e^{-2nx}$.

On note \mathcal{C}_n la courbe représentative de la fonction f_n dans un repère orthogonal.

On définit, pour tout entier naturel n non nul, $I_n = \int_0^1 f_n(x) dx$.

Partie A : Étude de la fonction f_1

1. La fonction f_1 est définie sur \mathbb{R} par

$$f_1(x) = x^2 e^{-2x}$$

On admet que f_1 est dérivable sur \mathbb{R} et on note f_1' sa dérivée.

- a) Justifier que pour tout réel $x, f'_1(x) = 2xe^{-2x}(1-x)$.
- b) Étudier les variations de la fonction f_1 sur \mathbb{R} .
- c) Déterminer la limite de f_1 en $-\infty$.
- d) Vérifier que pour tout réel $x, f_1(x) = \left(\frac{x}{e^x}\right)^2$. En déduire la limite de f_1 en $+\infty$.
- 2. En utilisant un système de calcul formel, on trouve qu'une primitive F_1 de la fonction f_1 est donnée par $F_1(x) = -e^{-2x} \left(\frac{x^2}{2} + \frac{x}{2} + \frac{1}{4} \right)$. En déduire la valeur exacte de I_1 .

Partie B : Étude de la suite (I_n)

- 1. Soit n un entier naturel non nul.
 - a) Interpréter graphiquement la quantité I_n .
 - b) Émettre alors une conjecture sur le sens de variation et sur la limite éventuelle de la suite (I_n) . Expliciter la démarche qui a mené à cette conjecture.
- 2. a) Justifier que, pour tout entier naturel n non nul et pour tout réel x appartenant à [0; 1],

$$f_{n+1}(x) = e^{-2x} f_n(x)$$

b) En déduire, pour tout entier naturel n non nul et pour tout réel x appartenant à [0; 1],

$$f_{n+1}(x) \leqslant f_n(x).$$

- c) Déterminer alors le sens de variation de la suite (I_n) .
- 3. Soit n un entier naturel non nul.
 - a) Justifier que pour tout entier naturel n non nul et pour tout réel x appartenant à [0; 1],

$$0 \leqslant f_n(x) \leqslant e^{-2nx}$$
.

b) En déduire un encadrement de la suite (I_n) , puis sa limite.