Devoir n°2 - Fonctions trigonométriques - Suites - TS

7 octobre 2016 - 2h

Exercice 1 (4 pts) : Soit f la fonction définie dur $\mathbb R$ par

$$f(x) = (\cos x)^2$$

- 1. a) Etudier la parité de la fonction f.
 - b) En affichant la courbe représentative de f à la calculatrice, conjecturer la périodicité de f, puis le justifier par un calcul.
- 2. Déterminer la fonction f' dérivée de f.
- 3. Dresser le tableau de variations de f sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

Exercice 2 (8 points) : Une société produit des bactéries pour l'industrie.

En laboratoire, il a été mesuré que, dans un milieu nutritif approprié, la masse de ces bactéries, mesurée en grammes, augmente de 20% en un jour.

La société met en place le dispositif industriel suivant.

Dans une cuve de milieu nutritif, on introduit initialement 1 kg de bactéries. Ensuite, chaque jour, à heure fixe, on remplace le milieu nutritif contenu dans la cuve.

Durant cette opération, 100 g de bactéries sont perdus.

L'entreprise se fixe pour objectif de produire 30 kg de bactéries.

On modélise l'évolution de la population de bactéries dans la cuve par la suite (u_n) définie ainsi : $u_0 = 1\,000$ et, pour tout entier naturel $n, u_{n+1} = 1, 2u_n - 100$.

1. a) Expliquer en quoi ce modèle correspond à la situation de l'énoncé.

On précisera en particulier ce que représente u_n .

- b) L'entreprise souhaite savoir au bout de combien de jours la masse de bactéries dépassera 30 kg. À l'aide de la calculatrice, donner la réponse à ce problème.
- c) Compléter l'algorithme suivant pour qu'il réponde au problème posé dans la question précédente.

Variables	u et n sont des nombres
Traitement	u prend la valeur 1 000 n prend la valeur 0 Tant que faire u prend la valeur n prend la valeur $n+1$ Fin Tant que
Sortie	Afficher

- 2. a) Démontrer par récurrence que, pour tout entier naturel $n, u_n \ge 1000$.
 - b) En déduire que la suite (u_n) est croissante.
- 3. On définit la suite (v_n) par : pour tout entier naturel $n, v_n = u_n 500$.
 - a) Démontrer que la suite (v_n) est une suite géométrique.
 - b) Exprimer v_n , puis u_n , en fonction de n.
 - c) Déterminer la limite de la suite (u_n) .

Exercice 3 (3 pts): Soit une suite (u_n) , $n \in \mathbb{N}$ telle que $-1 \le u_n \le 2$ pour tout $n \in \mathbb{N}$. On définie la suite (v_n) pour tout $n \in \mathbb{N}$ par

$$v_n = 1 - \frac{2}{u_n + 2}$$

- 1. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est bornée.
- 2. Montrer que, si $(u_n)_{n\in\mathbb{N}}$ est décroissante, alors $(v_n)_{n\in\mathbb{N}}$ est aussi décroissante.

Exercice 4 (5 points) : Soit f la fonction définie sur l'intervalle]-1; $+\infty[$ par :

$$f(x) = 3 - \frac{4}{x+1}.$$

On considère la suite définie pour tout $n \in \mathbb{N}$ par :

$$\begin{cases} u_0 = 4 \\ u_{n+1} = f(u_n) \end{cases}$$

- 1. On a tracé ci-dessous, la courbe $\mathcal C$ représentative de la fonction f sur l'intervalle $[0 ; +\infty[$ et la droite $\mathcal D$ d'équation y=x.
 - a) Sur le graphique, placer sur l'axe des abscisses, u_0 , u_1 , u_2 et u_3 . Faire apparaître les traits de construction.
 - b) Que peut-on conjecturer sur le sens de variation et la convergence de la suite (u_n) ?
- 2. Dans cette question, nous allons démontrer les conjectures formulées à la question 1. b.
 - a) Démontrer par un raisonnement par récurrence que $u_n \ge 1$ pour tout $n \in \mathbb{N}$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, on a : $u_{n+1} \leq u_n$.
 - c) question bonus : déterminer la limite de la suite (u_n) .

