Devoir n°3 - Limites de Suites - TS

2 novembre 2016 - 1h

Exercice 1 (8 pts) : Etudier la limite de chacune des suites suivantes :

1.
$$u_n = -2n^3 + n - 7 - \frac{15}{n}$$
 avec $n \in \mathbb{N}^*$

3.
$$t_n = \frac{2^n - 3^n}{3^n}$$
 avec $n \in \mathbb{N}^*$

2.
$$v_n = \frac{1}{n^2} \cos(\frac{1}{n})$$
 avec $n \in \mathbb{N}^*$

4.
$$s_n = \sqrt{n} - \sin n \text{ avec } n \in \mathbb{N}$$

Exercice 2 (2 pts): La suite (u_n) est définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{n^2}$.

- 1. Donner la limite de la suite (u_n) .
- 2. Démontrer le résultat précédent en utilisant la définition d'une suite convergente. (pour cela résoudre l'inéquation $u_n < \alpha$, pour $\alpha > 0$)

Exercice 3 (9 points) : On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n} \quad (\star)$$

1. On considère l'algorithme suivant :

Variables: n est un entier naturel

u est un réel positif

Initialisation : Demander la valeur de n

Affecter à u la valeur 1

Traitement : Pour i variant de 1 à n :

— Affecter à u la valeur $\sqrt{2u}$

Fin de Pour

Sortie: Afficher u

- a) Donner une valeur approchée à 10^{-4} près, du résultat affiché par cet algorithme quand n=3.
- b) Que permet de calculer cet algorithme?
- c) Le tableau ci-dessous donne des valeurs approchées obtenues à l'aide de cet algorithme.

n	1	5	10	15	20
Valeur affichée	1,4142	1,9571	1,9986	1,9999	1,9999

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- 2. Démontrer que, pour tout entier naturel $n, 0 < u_n \leq 2$.
- 3. Déterminer le sens de variation de la suite (u_n) .
- 4. Justifier que la suite (u_n) est convergente.
- 5. Soit l la limite de la suite (u_n)
 - a) Quelles sont les valeurs possibles de l?
 - b) On déduit de la relation (\star) que l vérifie $\ell = \sqrt{2\ell}$: déterminer la valeur de la limite l.
 - c) Compléter l'algorithme ci-dessous par les instructions du traitement et de la sortie, de façon à afficher en sortie la plus petite valeur de n telle que $u_n > 1,999$.

Variables: n est un entier naturel

u est un réel

Initialisation : Affecter à n la valeur 0

Affecter à u la valeur 1

Traitement:

Sortie: