Devoir n°5 - Continuité, Dérivabilité et TVI - TS

28 novembre 2016 - 1h

Exercice 1 (5 pts) : Soit la fonction f définie sur \mathbb{R} par

$$f(x) = \begin{cases} x^2 - 3x - 2 & \text{si } x \le 1\\ \frac{x - 5}{x} & \text{si } x > 1 \end{cases}$$

- 1. f est-elle continue sur \mathbb{R} ?
- 2. f est dérivable sur \mathbb{R} ?

Exercice 2 (15 pts) : Partie A : Soit la fonction g définie sur $[0; +\infty[$ par

$$g(x) = x^3 - 3x - 3$$

- 1. Etudier le sens de variation de g sur $[0; +\infty[$.
- 2. Démontrer que l'équation g(x) = 0 admet une unique solution dans $[0; +\infty[$ que l'on note α . Déterminer un encadrement de α d'amplitude 10^{-2} , puis une valeur approchée à 10^{-1} .
- 3. Déterminer le signe de g sur $[0; +\infty[$.

Partie B: Soit la fonction f définie sur $I = [0; 1[\cup]1; +\infty[$ par

$$f(x) = \frac{2x^3 + 3}{x^2 - 1}$$

On note C_f la courbe représentative de f.

- 1. Déterminer les limites de f aux bornes de I et préciser ses asymptotes (s'il y a lieu).
- 2. a) Calculer f'(x) et vérifier que $f'(x) = \frac{2xg(x)}{(x^2-1)^2}$.
 - b) Dresser le tableau de variations de f.
- 3. Soit \mathcal{D} la droite d'équation y=2x. Déterminer $\lim_{x\to +\infty}(f(x)-2x)$; que peut-on en déduire?