Devoir n°7 - Fonction Ln - TS

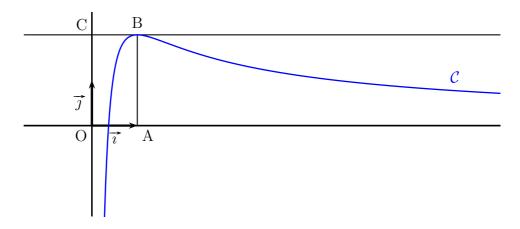
16 janvier 2017 - 1h

Exercice 1 (3 pts) : Restitution Organisée de Connaissances

Prérequis : On sait que $\lim_{t\to +\infty} \frac{\ln t}{t} = 0$ et que pour tout $t \in]0; +\infty[$, on a $\ln(\frac{1}{t}) = -\ln(t)$.

Montrer que $\lim_{x\to 0} x \ln x = 0$.

Exercice 2 (4 pts) : Sur le graphique ci-dessous, on a tracé, dans le plan muni d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, la courbe représentative C d'une fonction f définie et dérivable sur l'intervalle]0; $+\infty[$.



On dispose des informations suivantes :

- les points A, B, C ont pour coordonnées respectives (1; 0), (1; 2), (0; 2);
- la courbe \mathcal{C} passe par le point B et la droite (BC) est tangente à \mathcal{C} en B;
- il existe deux réels positifs a et b tels que pour tout réel strictement positif x,

$$f(x) = \frac{a + b \ln x}{x}.$$

- 1. En utilisant le graphique, donner les valeurs de f(1) et f'(1) (justifier).
- 2. Déterminer pour tout réel strictement positif, la fonction f', fonction dérivée de f.
- 3. En déduire les réels a et b.

Exercice 3 (13 pts):

Partie A : Soit u la fonction définie sur]0; $+\infty[$ par

$$u(x) = x^2 - 2 + \ln x.$$

- 1. Étudier les variations de u sur]0; $+\infty[$ et préciser ses limites en 0 et en $+\infty$.
- 2. a) Montrer que l'équation u(x) = 0 admet une solution unique sur]0; $+\infty[$; on note α cette solution.
 - b) À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
- 3. Déterminer le signe de u(x) suivant les valeurs de x.
- 4. Montrer l'égalité : $\ln \alpha = 2 \alpha^2$.

Partie B: On considère la fonction f définie et dérivable sur]0; $+\infty[$ par

$$f(x) = x^2 + (2 - \ln x)^2.$$

On note f' la fonction dérivée de f sur]0; $+\infty[$.

- 1. Exprimer, pour tout x de]0; $+\infty[, f'(x)]$ en fonction de u(x).
- 2. En déduire les variations de f sur]0; $+\infty[$.

Partie C : Dans le plan rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, on note :

- Γ la courbe représentative de la fonction ln (logarithme népérien);
- A le point de coordonnées (0; 2);
- M le point de Γ d'abscisse x appartenant à]0; $+\infty[$.
- 1. Montrer que la distance AM est donnée par $AM = \sqrt{f(x)}$.
- 2. Soit g la fonction définie sur]0; $+\infty[$ par $g(x) = \sqrt{f(x)}$.
 - a) Justifier que les fonctions f et g ont les mêmes variations sur]0; $+\infty[$.
 - b) Montrer que la distance AM est minimale en un point de Γ , noté P, dont on précisera les coordonnées.
 - c) Montrer que AP = $\alpha\sqrt{1+\alpha^2}$.