Devoir $n^o 1$ - Second degré -Trigonométrie - TS

17 septembre 2018 - 1h

Exercice 1 (4,5 pts) : Soit $P(x) = 2x^3 - 3x^2 - 3x + 2$ pour $x \in \mathbb{R}$.

- 1. Vérifier que 2 est racine de P et en déduire une factorisation de P(x).
- 2. Résoudre $P(x) \leq 0$.

Exercice 2 (4,5 pts):

- 1. Résoudre dans \mathbb{R} l'équation : $4x^4 + 11x^2 3 = 0$
- 2. Résoudre dans $[0; 2\pi[$ l'équation : $2\sin^2 x \sqrt{3} \sin x 3 = 0$

Exercice 3 (3 pts) : Soit l'équation (E_m) d'inconnue $x \in \mathbb{R}$:

$$x^2 - 2mx + m + 1 = 0$$

où m désigne un réel quelconque.

Discuter suivant la valeur du paramètre m le nombre de solutions de (E_m) .

Exercice 4 (4.5 pts):

- 1. Résoudre dans $]-\pi;\pi]$, l'équation : $\cos(2x)=\frac{1}{2}$
- 2. Résoudre dans $]-\pi;\pi]$, l'inéquation : $\cos x < -\frac{\sqrt{3}}{2}$
- 3. Résoudre dans $[0; 2\pi[$, l'inéquation : $4\sin^2 x \le 1$

Exercice 5 (3 pts) : On donne $\cos x = -\frac{\sqrt{2+\sqrt{2}}}{2}$ et $x \in [\frac{\pi}{2}; \pi[$.

Calculer $\sin x$, puis $\sin(2x)$; en déduire la valeur de x.