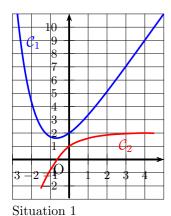
Devoir n°6 - Exponentielle - TS

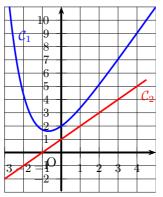
18 décembre 2018 - 2h

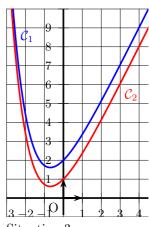
Exercice 1 (3 pts) : f est une fonction définie et dérivable sur \mathbb{R} . f' est la fonction dérivée de la fonction f. Dans le plan muni d'un repère orthogonal, on nomme \mathcal{C}_1 la courbe représentative de la fonction f et \mathcal{C}_2 la courbe représentative de la fonction f'.

Le point A(0; 2) appartient à C_1 , et le point B(0; 1) appartient à C_2 .

1. Dans les trois situations, on a dessiné la courbe représentative \mathcal{C}_1 de la fonction f. Sur l'une d'entre elles, la courbe C_2 de la fonction dérivée f' est tracée convenablement. Laquelle? Expliquer le choix effectué.







Situation 2 (C_2 est une droite)

Situation 3

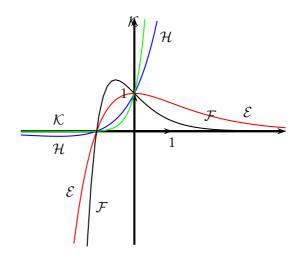
- 2. Déterminer l'équation réduite de la droite Δ tangente à la courbe C_1 en A.
- 3. On sait que pour tout réel x, $f(x) = e^{-x} + ax + b$ où a et b sont deux nombres réels. Déterminer les valeurs de a et b en utilisant les renseignements donnés par l'énoncé.

Exercice 2 (5 pts):

Pour tout entier relatif k, on note f_k la fonction définie sur \mathbb{R} par :

$$f_k(x) = (x+1)e^{kx}.$$

On note C_k la courbe représentative de la fonction f_k dans un repère orthonormal du plan.



- 1. a) Quelle est la nature de la fonction f_0 ?
 - b) Déterminer les points d'intersection des courbes C_0 et C_1 . Vérifier que, pour tout entier k, ces points appartiennent à la courbe \mathcal{C}_k .
- 2. Étudier, suivant les valeurs du réel x, le signe de l'expression : $(x+1)(e^x-1)$. En déduire, pour k entier relatif donné, les positions relatives des courbes C_k et C_{k+1} .
- 3. Calculer $f'_k(x)$ pour tout réel x et pour tout entier k non nul. En déduire le sens de variation de la fonction f_k suivant les valeurs de k. (On distinguera les cas : k > 0 et k < 0)
- 4. Le graphique suivant représente quatre courbes \mathcal{E} , \mathcal{F} , \mathcal{H} , et \mathcal{K} , correspondant à quatre valeurs différentes du paramètre k, parmi les entiers -1, -3, 1 et 2.

Identifier les courbes correspondant à ces valeurs en justifiant la réponse.

Exercice 3 (4 pts) : Partie A : On définit la suite (u_n) pour tout entier naturel n par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n), & \text{avec} f(x) = xe^{-x} \end{cases}$$

f est définie et dérivable sur [0; 1], et on admet que f est strictement croissante sur [0; 1].

- 1. Démontrer par récurrence que pour tout entier naturel $n, 0 \le u_{n+1} \le u_n \le 1$.
- 2. a) Montrer que la suite (u_n) est convergente.
 - b) On admet que la limite de la suite (u_n) est solution de l'équation f(x) = x. Résoudre cette équation pour déterminer la valeur de cette limite.

Partie B:

On considère la suite (S_n) définie pour tout entier naturel n par

$$S_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + \dots + u_n.$$

Compléter l'algorithme afin qu'il calcule S_{100} .

```
Déclaration des variables : S et u sont des nombres réels k est un nombre entier

Initialisation : u prend la valeur .....
S prend la valeur .....

Traitement : v prend la valeur v variant de 1 à ....
v prend la valeur v valeur v e v prend la valeur v e v prend la valeur v e v prend la valeur ....
```

Fin Pour Afficher

Exercice 4 (8 pts) : Partie A : Soit g la fonction définie sur \mathbb{R} par $g(x) = e^x - xe^x + 1$.

- 1. Déterminer les limites de g en $+\infty$ et en $-\infty$.
- 2. Étudier les variations de la fonction g, et dresser son tableau de variations
- 3. a) Montrer que l'équation g(x) = 0 admet sur \mathbb{R} une unique solution α . À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
 - b) Démontrer que $e^{\alpha} = \frac{1}{\alpha 1}$.
- 4. Déterminer le signe de g(x) suivant les valeurs de x.

Partie B: Soit A la fonction définie et dérivable sur $[0; +\infty[$ telle que $A(x) = \frac{4x}{e^x + 1}$.

- 1. Démontrer que pour tout réel x positif ou nul, A'(x) a le même signe que g(x).
- 2. En déduire les variations de la fonction A sur $[0; +\infty[$.

Partie C: (Bonus) Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{4}{e^x + 1}$.

On note (\mathcal{C}) sa courbe représentative dans un repère orthonormé.

Pour tout réel x positif ou nul, on note : M le point de coordonnées (x ; f(x)), P(x ; 0) et Q(0 ; f(x)).

- 1. Démontrer que l'aire du rectangle OPMQ est maximale lorsque M a pour abscisse α .
- 2. Le point M a pour abscisse α ; la tangente (T) en M à la courbe (\mathcal{C}) est-elle parallèle à la droite (PQ)?

