Devoir nº8 - Complexes - TS

5 février 2019 - 1h

Exercice 1 (10 pts) : Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse en justifiant la réponse. Une réponse non justifiée n'est pas prise en compte.

Affirmation 1: $\frac{\pi}{3}$ est un argument du nombre complexe $(-\sqrt{3}+i)^8$.

Affirmation 2 : Soient les points A, B et C d'affixes respectives $z_A = \sqrt{2} + 3i$, $z_B = 1 + i$ et $z_C = i\sqrt{2}$. Les points A, B et C ne sont pas alignés.

Affirmation 3 : Soit (*E*) l'équation $(z - 1)(z^2 - 8z + 25) = 0$

où z appartient à l'ensemble $\mathbb C$ des nombres complexes.

Les points du plan dont les affixes sont les solutions dans \mathbb{C} de l'équation (E) sont les sommets d'un triangle rectangle et isocèle.

Exercice 2 (10 pts) : On se place dans le plan complexe rapporté au repère $(O; \overrightarrow{u}, \overrightarrow{v})$. Soit f la transformation qui à tout nombre complexe z non nul associe le nombre complexe f(z) défini par :

$$f(z) = z + \frac{1}{z}.$$

On note M le point d'affixe z et M' le point d'affixe f(z).

- 1. On appelle A le point d'affixe $a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.
 - a) Déterminer la forme exponentielle de a.
 - b) Déterminer la forme algébrique de f(a).
- 2. Résoudre, dans l'ensemble des nombres complexes, l'équation f(z) = 1.
- 3. Soit M un point d'affixe z du cercle \mathcal{C} de centre O et de rayon 1.
 - a) Justifier que l'affixe z peut s'écrire sous la forme $z=\mathrm{e}^{\mathrm{i}\theta}$ avec θ un nombre réel.
 - b) Montrer que f(z) est un nombre réel.
- 4. Soit \mathcal{E} l'ensemble des points M d'affixe z tels que f(z) soit un nombre réel.
 - a) On pose z = x + iy avec $x, y \in \mathbb{R}$. Excirce f(z) en fonction de x et y.
 - b) Déterminer l'ensemble \mathcal{E} .
 - c) Représenter l'ensemble \mathcal{E} ainsi que le point A.