Devoir n°2 - Fonctions trigonométriques - Suites - TS

7 octobre 2019 - 1h15

Exercice 1 (7,5 pts): On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos^3(x) - \sin^3(x)$.

- 1. Etudier la parité de la fonction f (paire, impaire, ni l'un ni l'autre?)
- 2. Montrer que la fonction f est 2π -périodique.
- 3. a) Montrer que pour tout réel x, on a : $\sqrt{2}\cos(x-\frac{\pi}{4})=\cos x+\sin x$. b) Montrer que $f'(x)=-3\sqrt{2}\sin(x)\cos(x)\cos(x-\frac{\pi}{4})$.

 - c) Etudier le signe de f'(x) sur l'intervalle $[-\pi; \pi]$.
- 4. Dresser le tableau de variations de la fonction f sur $[-\pi;\pi]$.

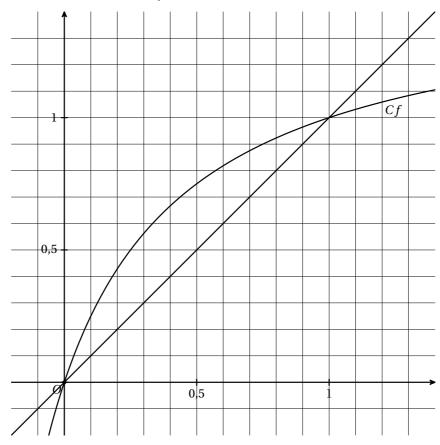
Exercice 2 (12,5 pts):

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n} = f(u_n)$$

où f est la fonction définie $]\frac{-1}{2}; +\infty[$ par $f(x)=\frac{3x}{1+2x}.$

Sur le graphique sont représentées la courbe C_f de la fonction f ainsi que la droite d'équation y = x.



- 1. a) Sur l'axe des abscisses, placer u_0 , puis construire u_1 , u_2 et u_3 en laissant apparents les traits de construction.
 - b) Quelles conjectures peut-on émettre sur le sens de variation et sur la convergence de la suite (u_n) .
- 2. Démontrer, par récurrence, que pour tout entier naturel n, $0 < u_n < 1$.
- 3. a) Etudier les variations de la fonction f.
- b) Démontrer par récurrence la variation observée de la suite (u_n) . 4. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - c) En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.
 - d) Déterminer la limite de la suite (u_n) .