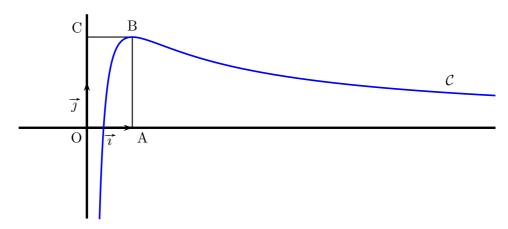
Devoir n°6bis - Fonction Ln - TS

11 février 2020 - 1h

Exercice 1 (3 pts): Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier la réponse choisie. g est la fonction définie sur $\left|-\frac{1}{2}\;;\;+\infty\right|$ par $g(x)=2x\ln(2x+1)$

- Proposition 1 : Sur] -1/2 ; +∞[, l'équation g(x) = 2x a une unique solution : e-1/2.
 Proposition 2 : Le coefficient directeur de la tangente à la courbe représentative de la fonction g au point
- d'abscisse $\frac{1}{2}$ est : $1 + \ln 4$.

Exercice 2 (8 pts) : Sur le graphique ci-dessous, on a tracé, dans le plan muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$, la courbe représentative \mathcal{C} d'une fonction f définie et dérivable sur l'intervalle $[0; +\infty[$.



On dispose des informations suivantes:

- les points A, B et C ont pour coordonnées respectives (1; 0), (1; 2) et (0; 2);
- la courbe \mathcal{C} passe par le point B et la droite (BC) est tangente à \mathcal{C} en B;
- il existe deux réels positifs a et b tels que pour tout réel strictement positif x, $f(x) = \frac{a + b \ln x}{x}$.
- 1. a) En utilisant le graphique, donner les valeurs de f(1) et f'(1).
 - b) Vérifier que pour tout réel strictement positif x, $f'(x) = \frac{(b-a)-b\ln x}{x^2}$.
 - c) En déduire les réels a et b.
- 2. a) Justifier que pour tout réel x appartenant à l'intervalle $]0, ; +\infty[, f'(x)]$ a le même signe que $-\ln x$.
 - b) Déterminer les limites de f en 0 et en $+\infty$ et interpréter graphiquement.
 - c) En déduire le tableau de variations de la fonction f.

Exercice 3 (9 pts):

Partie A: On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par

$$f(x) = 5\ln(x+3) - x$$
.

- 1. a) On appelle f' la fonction dérivée de la fonction f sur $[0; +\infty[;$ calculer f'(x) et étudier son signe sur $[0; +\infty[$.
 - b) Montrer que, pour tout x strictement positif on a

$$f(x) = x\left(5\frac{\ln x}{x} - 1\right) + 5\ln\left(1 + \frac{3}{x}\right).$$

En déduire la limite de f en $+\infty$.

- c) Dresser le tableau de variation de f sur l'intervalle $[0; +\infty[$.
- 2. a) Montrer que l'équation f(x)=0 admet une unique solution, notée α , dans l'intervalle $[0\ ;\ +\infty[$.
 - b) Après avoir vérifié que α appartient à l'intervalle [14; 15], donner une valeur approchée de α à 10^{-2} près.
 - c) En déduire le signe de f sur l'intervalle $[0; +\infty]$.

BONUS : Partie B : Soit (u_n) la suite définie par

$$\begin{cases} u_0 = 4 \\ u_{n+1} = 5 \ln (u_n + 3) \text{ pour tout entier naturel } n \ge 0 \end{cases}$$

On considère la fonction g définie sur l'intervalle $[0; +\infty[$ par $g(x) = 5\ln(x+3)$.

On a tracé dans un repère orthonormé la droite \mathcal{D} d'équation y = x et la courbe \mathcal{C} , courbe représentative de la fonction g.

- 1. a) Construire sur l'axe des abscisses les termes u_0 , u_1 , u_2 de la suite (u_n) en utilisant la droite et la courbe données et en laissant apparents les traits de construction.
 - b) Formuler une conjecture sur le sens de variation de la suite (u_n) .
- 2. a) Étudier le sens de variations de la fonction g sur l'intervalle $[0; +\infty[$.
 - b) Vérifier que $g(\alpha) = \alpha$ où α est défini dans la partie A question 2. a.
 - c) Démontrer par récurrence que, pour tout entier naturel n, on a $0 \le u_n \le \alpha$.
 - d) Démontrer alors la conjecture émise à la question 1. b. de la partie B.
 - e) En utilisant la question 2. a. de la partie A, justifier que $\lim_{n\to +\infty} u_n = \alpha$.
- 3. On considère l'algorithme suivant :

$$u$$
 prend la valeur 4
Répéter Tant que $u-14, 2 < 0$
 u prend la valeur de $5 \ln(u+3)$
Fin du Tant que
Afficher u

- a) Dans cette question toute trace de recherche, même incomplète ou d'initiative, même infructueuse, sera prise en compte dans l'évaluation. Justifier que cet algorithme se termine.
- b) Donner la valeur que cet algorithme affiche (on arrondira à 5 décimales).

