Test4 - Suites - TS

25 mai 2020 - 1h

¡ El último test, asi que adelante!

On considère la suite (u_n) définie par $u_0 = 1$, et pour tout entier naturel n,

$$u_{n+1} = e \times \sqrt{u_n}$$
.

1. Démontrer par récurrence que, pour tout entier naturel n,

$$1 \leqslant u_n \leqslant e^2$$
.

- 2. a) Démontrer que la suite (u_n) est croissante.
 - b) En déduire la convergence de la suite (u_n) .
- 3. Pour tout entier naturel n, on pose

$$v_n = \ln\left(u_n\right) - 2.$$

- a) Démontrer que la suite (v_n) est géométrique de raison $\frac{1}{2}$.
- b) Démontrer que, pour tout entier naturel n,

$$v_n = -\frac{1}{2^{n-1}}.$$

- c) En déduire une expression de u_n en fonction de l'entier naturel n.
- d) Calculer la limite de la suite (u_n) .
- 4. Dans cette question, on s'interroge sur le comportement de la suite (u_n) si l'on choisit d'autres valeurs que 1 pour u_0 . Pour chacune des affirmations ci-dessous, indiquer si elle est vraie ou fausse en justifiant.

Affirmation 1: « Si $u_0 = 2018$, alors la suite (u_n) est croissante. »

Affirmation 2: « Si $u_0 = 2$, alors pour tout entier naturel $n, 1 \le u_n \le e^2$. »

Affirmation 3: « La suite (u_n) est constante si et seulement si $u_0 = 0$. »