Devoir nº11 - Calcul intégral - TSpé maths

29 avril 2021 - 30 min

Exercice 1 (2,5 pts) : A l'aide d'une intégration par parties, calculer : $A = \int_1^2 (3x^2 - 12x + 1) \ln(x) dx$

Exercice 2 (4 pts) : A l'aide de deux intégration par parties successives, calculer : $B = \int_0^{\frac{\pi}{2}} e^{2x} \cos(3x) dx$

Exercice 3 (3,5 pts) : Soit la fonction f définie sur $]-2;+\infty[$ par $f(x)=\frac{2x^2+3x+1}{x+2}$

- 1. Montrer qu'il existe a, b et $c \in \mathbb{R}$ tels que $f(x) = ax + b + \frac{c}{x+2}$.
- 2. En déduire la valeur de $I = \int_{-1}^{1} f(x) dx$.

Exercice 4 (Bonus): On considère la fonction f définie sur $[1; +\infty[$ par $f(x) = (x-1)e^{1-x}$. Pour tout $x \in [1; +\infty[$, on pose :

$$F(x) = \int_{1}^{x} f(t) dt = \int_{1}^{x} (t-1)e^{1-t} dt$$

- 1. Montrer que la fonction F est croissante sur $[1; +\infty[$.
- 2. Avec une intégration par parties, montrer que $F(x) = 1 xe^{1-x}$.