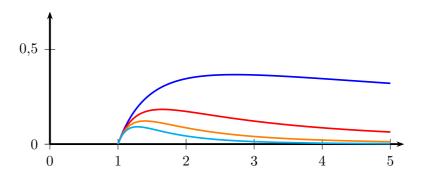
Devoir $n^{\underline{o}}12$ - le dernier! - Calcul intégral - TSpé maths

On considère, pour tout entier n > 0, les fonctions f_n définies sur [1; 5] par :

$$f_n(x) = \frac{\ln x}{x^n}$$

Pour tout entier n > 0, on note C_n la courbe représentative de la fonction f_n dans un repère orthogonal. Sur le graphique ci-dessous sont représentées les courbes C_n pour n appartenant à $\{1; 2; 3; 4\}$. Pour tout entier $n \ge 1$, on définit le nombre I_n par

$$I_n = \int_1^5 f_n(x) \, \mathrm{d}x$$



- 1. (2 pts) En expliquant votre démarche, conjecturer le sens de variation de la suite (I_n) , ainsi que l'existence et la valeur éventuelle de sa limite, lorsque n tend vers $+\infty$.
- 2. (1,5 pt) Calculer la valeur exacte de I_1 .
- 3. a) (1,5 pt) Montrer que pour tout réel x sur [1; 5] et pour tout entier naturel $n \ge 1$, on a : $f_{n+1}(x) \le f_n(x)$
 - b) (1 pt) En déduire le sens de variation de la suite (I_n) pour tout entier naturel $n \ge 1$.
- 4. a) (1 pt) Montrer que, pour tout entier n > 1 et tout réel x de l'intervalle $[1; 5]: 0 \leqslant \frac{\ln(x)}{x^n} \leqslant \frac{\ln(5)}{x^n}$
 - b) (1,5 pt) Montrer que pour tout entier n > 1: $\int_{1}^{5} \frac{1}{x^{n}} dx = \frac{1}{n-1} \left(1 \frac{1}{5^{n-1}} \right)$
 - c) (1,5 pt) En déduire que : $0 \leqslant I_n \leqslant \frac{\ln(5)}{n-1} (1 \frac{1}{5^{n-1}})$ pour tout entier naturel n > 1.
- 5. (0.75 + 1.25 pt) Justifier que la suite (I_n) est convergente et déterminer sa limite.
- 6. En Bonus:
 - a) Montrer que, pour tout entier n > 0 et tout réel x de l'intervalle $[1; 5]: f'_n(x) = \frac{1 n \ln(x)}{x^{n+1}}$
 - b) Pour tout entier n > 0, on admet que la fonction f_n admet un maximum sur l'intervalle [1; 5]. On note A_n le point de la courbe C_n ayant pour ordonnée ce maximum.

 Montrer que tous les points A_n appartiennent à une même courbe Γ d'équation $y = \frac{1}{2} \ln(x)$